Skip to main content
Log in

Identification of a possible respiratory arsenate reductase in Denitrovibrio acetiphilus, a member of the phylum Deferribacteres

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Denitrovibrio acetiphilus N2460T is one of the few members of the phylum Deferribacteres with a sequenced genome. N2460T was capable of growing with dimethyl sulfoxide, selenate, or arsenate provided as a terminal electron acceptor, and we identified 15 genes that could possibly encode respiratory reductases for these compounds. The protein encoded by one of these genes, YP_003504839, clustered with respiratory arsenate reductases on a phylogenetic tree. Transcription of the gene for YP_003504839, Dacet_2121, was highly induced when arsenate was provided as a terminal electron acceptor. Dacet_2121 exists in a possible operon that is distinct from the previously characterized respiratory arsenate reductase operon in Shewanella sp. ANA-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afkar E, Lisak J et al (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226(1):107–112

    Article  PubMed  CAS  Google Scholar 

  • Barringer JL, Mumford A et al (2010) Pathways for arsenic from sediments to groundwater to streams: biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Water Res 44(19):5532–5544

    Article  PubMed  CAS  Google Scholar 

  • Bender KS, Shang C et al (2005) Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 187(15):5090–5096

    Article  PubMed  CAS  Google Scholar 

  • Bini E, Rauschenbach I et al. (2011) Complete genome sequence of Desulfurispirillum indicum strain S5T. Stand Genomic Sci 5(3):371–378

    Article  PubMed  CAS  Google Scholar 

  • Busenlehner LS, Pennella MA et al (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27(2–3):131–143

    Article  PubMed  CAS  Google Scholar 

  • Caccavo F Jr, Coates JD et al (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165(6):370–376

    Article  PubMed  CAS  Google Scholar 

  • Cai J, DuBow MS (1996) Expression of the Escherichia coli chromosomal ars operon. Can J Microbiol 42(7):662–671

    Article  PubMed  CAS  Google Scholar 

  • Campbell KM, Malasarn D et al (2006) Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide. Environ Sci Technol 40(19):5950–5955

    Article  PubMed  CAS  Google Scholar 

  • Celik I, Gallicchio L et al (2008) Arsenic in drinking water and lung cancer: a systematic review. Environ Res 108(1):48–55

    Article  PubMed  CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89(4):713–764

    Article  CAS  Google Scholar 

  • Cummings DE, Caccavo F et al (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33(5):723–729

    Article  CAS  Google Scholar 

  • Das N, Paul S et al (2012) Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health 12(1):639

    Article  PubMed  Google Scholar 

  • Davidson AL, Dassa E et al (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol R 72(2):317–364

    Article  CAS  Google Scholar 

  • de Jong A, Pietersma H et al (2012) PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13(1):299

    Article  PubMed  Google Scholar 

  • Dimmic MW, Rest JS et al (2002) rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol 55(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Ditty JL, Kvaal CA et al (2010) Incorporating genomics and bioinformatics across the life sciences curriculum. PLoS Biol 8(8):e1000448

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204(2):335–340

    Article  PubMed  CAS  Google Scholar 

  • Giloteaux L, Holmes DE et al (2013) Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. ISME J 7(2):370–383

    Article  PubMed  CAS  Google Scholar 

  • Grafe M, Eick MJ et al (2001) Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci Soc Am J 65(6):1680–1687

    Article  CAS  Google Scholar 

  • Hayashi K, Morooka N et al (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2(1). doi:10.1038/msb4100049

  • Huber R, Sacher M et al (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23(3):305–314

    Article  PubMed  CAS  Google Scholar 

  • Hungate R (1969) A roll tube method for cultivation of strict anaerobes. Method Microbiol 3(Part B):117–132

    Article  Google Scholar 

  • Ilbert M, Méjean V et al (2004) Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins. Microbiology 150(4):935–943

    Article  PubMed  CAS  Google Scholar 

  • Islam FS, Gault AG et al (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430(6995):68–71

    Article  PubMed  CAS  Google Scholar 

  • Janssen PH, Liesack W et al (2002) Geovibrio thiophilus sp. nov., a novel sulfur-reducing bacterium belonging to the phylum Deferribacteres. Int J Syst Evol Micr 52(4):1341–1347

    Article  CAS  Google Scholar 

  • Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo–Fe–S enzyme. J Bacteriol 183(15):4536–4542

    Article  PubMed  CAS  Google Scholar 

  • Jumas-Bilak E, Roudière L et al (2009) Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. Int J Syst Evol Microbiol 59(5):1028–1035

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Asimenos G et al (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64

    Article  PubMed  CAS  Google Scholar 

  • Kengen SWM, Rikken GB et al (1999) Purification and characterization of (per)Chlorate reductase from the chlorate-respiring strain GR-1. J Bacteriol 181(21):6706–6711

    PubMed  CAS  Google Scholar 

  • Kiss H, Lang E et al (2010) Complete genome sequence of Denitrovibrio acetiphilus type strain (N2460T). Stand Genomic Sci 2(3):270

    Article  PubMed  Google Scholar 

  • Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255(3):647–653

    Article  PubMed  CAS  Google Scholar 

  • Kunisawa T (2011) Inference of the phylogenetic position of the phylum Deferribacteres from gene order comparison. Antonie Van Leeuwenhoek 99(2):417–422

    Article  PubMed  Google Scholar 

  • Malasarn D, Saltikov C et al (2004) arrA is a reliable marker for As (V) respiration. Science 306(5695):455

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T. (1989). In: Sambrook J, Fritsch EF, Maniatis T (eds) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

  • Markowitz VM, Chen IMA et al (2010) The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res 38(suppl 1):D382–D390

    Article  PubMed  CAS  Google Scholar 

  • McDevitt CA, Hugenholtz P et al (2002) Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol 44(6):1575–1587

    Article  PubMed  CAS  Google Scholar 

  • Myhr S, Torsvik T (2000) Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. Int J Syst Evol Microbiol 50(4):1611–1619

    Article  PubMed  CAS  Google Scholar 

  • Narasingarao P, Häggblom MM (2007) Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Appl Environ Microbiol 73(11):3519–3527

    Article  PubMed  CAS  Google Scholar 

  • Navas-Acien A, Silbergeld EK et al (2008) Arsenic exposure and prevalence of type 2 diabetes in US adults. J Am Med Assoc (JAMA) 300(7):814–822

    Article  CAS  Google Scholar 

  • Niggemyer A, Spring S et al (2001) Isolation and characterization of a novel As(V)-reducing Bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67(12):5568–5580

    Article  PubMed  CAS  Google Scholar 

  • Nonaka H, Keresztes G et al (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188(6):2262–2274

    Article  PubMed  CAS  Google Scholar 

  • Notredame C, Higgins DG et al (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–218

    Article  PubMed  CAS  Google Scholar 

  • Prakash S, Cooper G et al (2003) The ion transporter superfamily. BBA Biomembr 1618(1):79–92

    Article  CAS  Google Scholar 

  • Pruitt KD, Tatusova T et al (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40(D1):D130–D135

    Article  PubMed  CAS  Google Scholar 

  • Rahman MM, Ng JC et al (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31:189–200

    Article  PubMed  CAS  Google Scholar 

  • Rauschenbach I, Yee N et al (2011) Energy metabolism and multiple respiratory pathways revealed by genome sequencing of Desulfurispirillum indicum strain S5. Environ Microbiol 3(6):1611–1621

    Article  Google Scholar 

  • Rauschenbach I, Bini E et al (2012) Physiological response of Desulfurispirillum indicum S5 to arsenate and nitrate as terminal electron acceptors. FEMS Microbiol Ecol 81(1):156–162

    Article  PubMed  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529(1):86–92

    Article  PubMed  CAS  Google Scholar 

  • Rothery RA, Workun GJ et al (2008) The prokaryotic complex iron–sulfur molybdoenzyme family. BBA Biomembr 1778(9):1897–1929

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132(3):365–386

    PubMed  CAS  Google Scholar 

  • Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. PNAS 100(19):10983

    Article  PubMed  CAS  Google Scholar 

  • Saltikov CW, Cifuentes A et al (2003) The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol 69(5):2800–2809

    Article  PubMed  CAS  Google Scholar 

  • Santini JM, Stolz JF et al (2002) Isolation of a new arsenate-respiring bacterium–Physiological and Phylogenetic Studies. Geomicrobiol J 19(1):41–52

    Article  CAS  Google Scholar 

  • Schröder I, Rech S et al (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272(38):23765–23768

    Article  PubMed  Google Scholar 

  • Shi J, Vlamis-Gardikas A et al (1999) Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J Biol Chem 274(51):36039–36042

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Basu P et al (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thorell HD, Stenklo K, Karlsson J, Nilsson T (2003) A gene cluster for chlorate metabolism in Ideonella dechloratans. Appl Environ Microbiol 69(9):5585–5592

    Article  PubMed  CAS  Google Scholar 

  • Tufano KJ, Reyes C et al (2008) Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ Sci Technol 42(22):8283–8289

    Article  PubMed  CAS  Google Scholar 

  • Weiner JH, MacIsaac DP et al (1988) Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron–sulfur molybdoenzyme with broad substrate specificity. J Bacteriol 170(4):1505–1510

    PubMed  CAS  Google Scholar 

  • West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26(6):369–376

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Rosen BP (1993) The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol Microbiol 8(3):615–623

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Department of Energy’s Joint Genome Institute’s Interpret a Genome for Education program for providing software and support to the undergraduate researchers involved in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Wiatrowski.

Additional information

Communicated by Gregory Cook.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denton, K., Atkinson, M.M., Borenstein, S.P. et al. Identification of a possible respiratory arsenate reductase in Denitrovibrio acetiphilus, a member of the phylum Deferribacteres. Arch Microbiol 195, 661–670 (2013). https://doi.org/10.1007/s00203-013-0915-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0915-5

Keywords

Navigation