Advertisement

Archives of Microbiology

, Volume 195, Issue 9, pp 595–604 | Cite as

Fluorescent epibiotic microbial community on the carapace of a Bahamian ostracod

  • J. Jarett
  • C. Fiore
  • C. Mazel
  • M. LesserEmail author
Original Paper

Abstract

Ostracods collected from shallow coral reefs in the Bahamas were found to exhibit blue light-stimulated orange fluorescence at night. Fluorescent spectra revealed the presence of orange fluorescence with a maximum emission at ~595 nm on the carapace of these ostracods, while scanning electron microscopy revealed a morphologically diverse microbial community covering the entire carapace of these ostracods. Pyrosequencing and cyanobacterial-specific 16S rRNA sequencing reveals that this epibiont community is highly diverse and highly variable between individual ostracods. Many species of Cyanobacteria in the orders Oscillatoriales and Chroococcales, as well as other Proteobacteria and diatom chloroplast sequences, were identified using the cyanobacterial-specific primers. While no fluorescent proteins or phycoerythrin were detected in these ostracods, it is possible that the observed orange fluorescence is the result of carotenoid fluorescence from Cyanobacteria. The microbial consortium forms an epibiotic biofilm on the carapace of these ostracods whose functions are unknown.

Keywords

Ostracods Biofilm Mats Fluorescence Cyanobacteria Carotenoids 

Notes

Acknowledgments

This work was supported by grants from the Office of Naval Research (Optics Program) to CM and MPL and National Science Foundation to MPL. Additionally, we would like to thank the UNH Electron Microscopy Facility and Nancy Cherim for assistance with preparation of samples for SEM and Charles Traverse for help with editing figures. These studies comply with the current laws of the Bahamas and the United States of America.

Supplementary material

203_2013_911_MOESM1_ESM.docx (120 kb)
Supplementary material 1 (DOCX 120 kb)

References

  1. Bailey S, Grossman A (2008) Photoprotection in Cyanobacteria: regulation of light harvesting. Photochem Photobiol 84:1410–1420PubMedCrossRefGoogle Scholar
  2. Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2011) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13:340–349PubMedCrossRefGoogle Scholar
  3. Bengtsson MM, Øvreås L (2010) Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol 10:261Google Scholar
  4. Bou-Abdallah F, Chasteen ND, Lesser MP (2006) Quenching of superoxide radicals by green fluorescent protein. Biochim Biophys Acta 1760:1690–1695PubMedCrossRefGoogle Scholar
  5. Bowlby MR, Widder EA, Case JF (1991) Disparate forms of bioluminescence from the amphipods Cyphocaris faurei, Scina crassicornis and S. borealis. Mar Biol 108:247–253CrossRefGoogle Scholar
  6. Burrow LB, Woebken D, Marshall IPG, Lindquist EA, Bebout BM, Prufert-Bebout L, Hoehler TM, Tringe SG, Pett-Ridge J, Weber PK, Spormann AM, Singer SW (2013) Anoxic carbon flux photosynthetic microbial mats as revealed by metatranscriptome. IMSE J 7:817–829Google Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336PubMedCrossRefGoogle Scholar
  8. Carman KR, Dobbs FC (1997) Epibiotic microorganisms on copepods and other marine organisms. Microsc Res Tech 37:116–135PubMedCrossRefGoogle Scholar
  9. Díez B, Bauer K, Bergman B (2007) Epilithic cyanobacterial communities of a marine tropical beach rock (Heron Island, Great Barrier Reef): diversity and diazotrophy. Appl Environ Microbiol 73:3656–3668PubMedCrossRefGoogle Scholar
  10. Dillon JG, Miller S, Bebout B, Hullar M, Pinel N, Stahl DA (2009) Spatial and temporal variability in a stratified hypersaline microbial mat community. FEMS Microbiol Ecol 68:46–58PubMedCrossRefGoogle Scholar
  11. Dove SG (2004) Scleractinian corals with protective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116CrossRefGoogle Scholar
  12. Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204CrossRefGoogle Scholar
  13. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461PubMedCrossRefGoogle Scholar
  14. Everroad RC, Wood AM (2006) Comparative molecular evolution of newly discovered picocyanobacterial strains reveals a phylogenetically informative variable region of β-phycoerythrin. J Phycol 42:1300–1311CrossRefGoogle Scholar
  15. Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, Princeton, NJGoogle Scholar
  16. Gillbro T, Cogdell RJ (1989) Carotenoid fluorescence. Chem Phys Lett 158:312–316CrossRefGoogle Scholar
  17. Gilmore AM, Larkum AWD, Salih A, Itoh S, Shibata Y, Bena C, Yamasaki H, Papina M, Van Woesik R (2003) Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem Photobiol 77:515–523PubMedCrossRefGoogle Scholar
  18. Goffredi SK, Jones WJ, Erhlick H, Spronger A, Vrijenhoek RC (2008) Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta. Environ Microbiol 10:2623–2634PubMedCrossRefGoogle Scholar
  19. Haas BJ, Gevers D, Earl AM et al (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504PubMedCrossRefGoogle Scholar
  20. Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Ann Rev Mar Sci 2:443–493PubMedCrossRefGoogle Scholar
  21. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108PubMedCrossRefGoogle Scholar
  22. Hollingsworth LL, Kinzie RA, Lewis TD, Krupp DA, Leong JC (2005) Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs 24:523CrossRefGoogle Scholar
  23. Kao H-T, Sturgis S, DeSalle R, Tsai J, Davis D, Gruber DF, Pierbone VA (2007) Dynamic regulation of fluorescent proteins from a single species of coral. Mar Biotech 9:733–746CrossRefGoogle Scholar
  24. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Ann Rev Physiol 68:253–278CrossRefGoogle Scholar
  25. Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing Cyanobacteria in corals. Science 305:997–1000PubMedCrossRefGoogle Scholar
  26. Lesser MP, Falcón LI, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O, Iglesias-Prieto R (2007) Nitrogen fixation by symbiotic Cyanobacteria provides a source of nitrogen for the scleractinian coral, Montastraea cavernosa. Mar Ecol Prog Ser 346:143–152CrossRefGoogle Scholar
  27. Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  28. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973PubMedCrossRefGoogle Scholar
  29. Mazel CH (1995) Spectral measurements of fluorescence emission in Caribbean cnidarians. Mar Ecol Prog Ser 120:185–191CrossRefGoogle Scholar
  30. Mazel CH, Lesser MP, Gorbunov MY, Barry TM, Farrell JH, Wyman KD, Falkowski PG (2003) Green-fluorescent proteins in Caribbean corals. Limnol Oceanogr 48:402–411CrossRefGoogle Scholar
  31. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from Cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedGoogle Scholar
  32. Nübel U, Garcia-Pichel F, Kühl M, Muyzer G (1999) Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl Environ Microbiol 65:422–430PubMedGoogle Scholar
  33. Oswald F, Schmitt F, Leutenegger A, Ivanchenko S, D’Angello C, Salih A, Maslakova S, Bulina M, Schirmbeck R, Nienhaus GU, Matz MV, Wiedenmann J (2007) Contributions of host and symbiont pigments to the coloration of reef corals. FEBS J 274:1102–1109PubMedCrossRefGoogle Scholar
  34. Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS ONE 4:e7298PubMedCrossRefGoogle Scholar
  35. Pedersen MO, Linnanto J, Frigaard NU, Nielsen NU, Miller M (2010) A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth Res 104:233–243PubMedCrossRefGoogle Scholar
  36. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196PubMedCrossRefGoogle Scholar
  37. Rivers TJ, Morin JG (2008) Complex sexual courtship displays by luminescent male marine ostracods. J Exp Biol 211:2252–2262PubMedCrossRefGoogle Scholar
  38. Salih A, Larkum A, Cox G, Kühl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853PubMedCrossRefGoogle Scholar
  39. Schlichter D, Fricke HW (1990) Coral host improves photosynthesis of endosymbiotic algae. Naturwissenschaften 77:447–450CrossRefGoogle Scholar
  40. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90CrossRefGoogle Scholar
  41. Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, Labas YA, Semenova TN, Ugalde JA, Meyers A, Nunez JM, Widder EA, Lukyanov SA, Matz MV (2004) GFP-like proteins as ubiquitous metazoan family: evolution of functional features and structural complexity. Mol Biol Evol 21:841–850PubMedCrossRefGoogle Scholar
  42. Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc 217:3–15CrossRefGoogle Scholar
  43. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210PubMedCrossRefGoogle Scholar
  44. Tang K, Dziallas C, Hutalle-Schmeizer K, Grossart H-P (2009) Effect of food on bacterial community composition associated with the copepod Arcatia tonsa Dana. Biol Lett 5:549–553PubMedCrossRefGoogle Scholar
  45. Taniguchi M, Toyota K, Kimura M (1997a) Seasonal variation of microcrustaceans and microbial flora on their surface in the overlying water of a Japanese paddy field. Soil Sci Plant Nutr 43:651–664CrossRefGoogle Scholar
  46. Taniguchi M, Toyota K, Kimura M (1997b) Epibiotic bacteria associated with microcrustaceans in the overlying water of paddy fields. Soil Sci Plant Nutr 43:633–641CrossRefGoogle Scholar
  47. Vermaas WFJ, Timlin JA, Jones HDT, Sinclair MB, Nieman LT, Hamad SW, Melgaard DK, Haaland DM (2008) In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. Proc Natl Acad Sci 105:4050–4055PubMedCrossRefGoogle Scholar
  48. Wahl M (2008) Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling 24:427–438PubMedCrossRefGoogle Scholar
  49. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCrossRefGoogle Scholar
  50. Webster NS, Smith LD, Heyward AJ, Watts JEM, Webb RI, Blackall LL, Negri AP (2004) Metamorphosis of a scleractinian coral in response to microbial films. Appl Environ Microbiol 70:1213–1221PubMedCrossRefGoogle Scholar
  51. Wilson T, Hastings W (1998) Bioluminescence. Ann Rev Cell Dev Biol 14:197–230Google Scholar
  52. Yamaguchi S, Endo K (2003) Molecular phylogeny of Ostracoda (Crustacea) inferred from 18S ribosomal DNA sequences: implications for its origin and diversification. Mar Biol 143:23–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamUSA
  2. 2.Physical Sciences Inc.AndoverUSA

Personalised recommendations