Skip to main content
Log in

The influence of CsgD on the expression of genes of folate metabolism and hmp in Escherichia coli K-12

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The csgD gene codes for the regulatory protein CsgD. CsgD upregulates the synthesis of the adhesive fimbriae, curli, that are important for biofilm formation and downregulates flagellar synthesis. We compared the expression of genes involved in folate metabolism and a gene (hmp) in strains with an intact csgD gene and with a deletion in csgD. The hmp gene codes a flavohemoglobin that inactivates nitric oxide. Expression was monitored by measuring light production from single copy lux operon fusions. At late times of growth, expression of genes responsible for methylene tetrahydrofolate synthesis (glyA and gcvTHP) and formyltetrahydrofolate recycling (purU) was higher in cells with CsgD than those without. In contrast, expression of hmp was lower in the presence of CsgD throughout the period monitored. We used a novel defined medium which should assist in defining nutritional factors that contribute to curli formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008

    PubMed  Google Scholar 

  • Baev MV, Baev D, Radek AJ, Campbell JW (2006) Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of sugars, alcohols, and organic acids with transcriptional microarrays. Appl Microbiol Biotechnol 71:310–316

    Article  PubMed  CAS  Google Scholar 

  • Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147

    Article  PubMed  CAS  Google Scholar 

  • Barnhart MM, Lynem J, Chapman MR (2006) GlcNAc-6P levels modulate the expression of curli fibers by Escherichia coli. J Bacteriol 188:5212–5219

    Article  PubMed  CAS  Google Scholar 

  • Bjarnason J, Southward CM, Surette MG (2003) Genomic profiling of iron-responsive genes in Salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol 185:4973–4982

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Brombacher E, Baratto A, Dorel C, Landini P (2006) Gene expression regulation by the curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion. J Bacteriol 188:2027–2037

    Article  PubMed  CAS  Google Scholar 

  • Chirwa NT, Herrington MB (2003) CsgD, a regulator of curli and cellulose synthesis, also regulates serine hydroxymethyltransferase synthesis in Escherichia coli K-12. Microbiology 149:525–535

    Article  PubMed  CAS  Google Scholar 

  • Chirwa NT, Herrington MB (2004) Role of MetR and PurR in the activation of glyA by CsgD in Escherichia coli K-12. Can J Microbiol 50:683–690

    Article  PubMed  CAS  Google Scholar 

  • Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW (1991) Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173:4773–4781

    PubMed  CAS  Google Scholar 

  • Collinson SK, Clouthier SC, Doran JL, Banser PA, Kay WW (1996) Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol 178:662–667

    PubMed  CAS  Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  PubMed  CAS  Google Scholar 

  • Ferenci T, Zhou Z, Betteridge T, Ren Y, Liu Y, Feng L, Reeves PR, Wang L (2009) Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12. J Bacteriol 191:4025–4029

    Article  PubMed  CAS  Google Scholar 

  • Forrester MT, Foster MW (2012) Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic Biol Med 52:1620–1633

    Article  PubMed  CAS  Google Scholar 

  • Garavaglia M, Rossi E, Landini P (2012) The pyrimidine nucleotide biosynthetic pathway modulates production of biofilm determinants in Escherichia coli. PLoS ONE 7:e31252

    Article  PubMed  CAS  Google Scholar 

  • Gardner PR, Gardner AM, Martin LA, Salzman AL (1998) Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci U S A 95:10378–10383

    Article  PubMed  CAS  Google Scholar 

  • Giladi M, Altman-Price N, Levin I, Levy L, Mevarech M (2003) FolM, a new chromosomally encoded dihydrofolate reductase in Escherichia coli. J Bacteriol 185:7015–7018

    Article  PubMed  CAS  Google Scholar 

  • Gualdi L, Tagliabue L, Landini P (2007) Biofilm formation-gene expression relay system in Escherichia coli: modulation of sigmaS-dependent gene expression by the CsgD regulatory protein via sigmaS protein stabilization. J Bacteriol 189:8034–8043

    Article  PubMed  CAS  Google Scholar 

  • Hammar M, Arnqvist A, Bian Z, Olsén A, Normark S (1995) Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670

    Article  PubMed  CAS  Google Scholar 

  • Herring CD, Glasner JD, Blattner FR (2003) Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311:153–163

    Article  PubMed  CAS  Google Scholar 

  • Herrington MB, Chirwa NT (1999) Growth properties of a folA null mutant of Escherichia coli K12. Can J Microbiol 45:191–200

    PubMed  CAS  Google Scholar 

  • Holmqvist E, Reimegard J, Sterk M, Grantcharova N, Römling U, Wagner EG (2010) Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. EMBO J 29:1840–1850

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen MG, Nielsen JS, Boysen A, Franch T, Moller-Jensen J, Valentin-Hansen P (2012) Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli. Mol Microbiol 84:36–50

    Article  PubMed  Google Scholar 

  • Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Fulcher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39:D583–D590

    Article  PubMed  CAS  Google Scholar 

  • Kim W, Surette MG (2006) Coordinated regulation of two independent cell–cell signaling systems and swarmer differentiation in Salmonella enterica serovar Typhimurium. J Bacteriol 188:431–440

    Article  PubMed  CAS  Google Scholar 

  • Lim JY, May J, Cegelski L (2012) DMSO and ethanol elicit increased amyloid biogenesis and amyloid-integrated biofilm formation in E. coli. Appl Environ Microbiol 78:3369–3378

    Article  PubMed  CAS  Google Scholar 

  • Membrillo-Hernández J, Cook GM, Poole RK (1997) Roles of RpoS (sigmaS), IHF andppGpp in the expression of the hmp gene encoding the flavohemoglobin (Hmp) of Escherichia coli K-12. Mol Gen Genet 254:599–603

    Article  PubMed  Google Scholar 

  • Membrillo-Hernández J, Coopamah MD, Channa A, Hughes MN, Poole RK (1998) A novel mechanism for upregulation of the Escherichia coli K-12 hmp (flavohaemoglobin) gene by the ‘NO releaser’, S-nitrosoglutathione: nitrosation of homocysteine and modulation of MetR binding to the glyA-hmp intergenic region. Mol Microbiol 29:1101–1112

    Article  PubMed  Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Meth Enzymol 101:20–78

    Article  PubMed  CAS  Google Scholar 

  • Mika F, Busse S, Possling A, Berkholz J, Tschowri N, Sommerfeldt N, Pruteanu M, Hengge R (2012) Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli. Mol Microbiol 84:51–65

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics Cold Spring Harbor. Cold Spring Harbor, New York

    Google Scholar 

  • Ogasawara H, Yamada K, Kori A, Yamamoto K, Ishihama A (2010a) Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology 156:2470–2483

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara H, Yamamoto K, Ishihama A (2010b) Regulatory role of MlrA in transcription activation of csgD, the master regulator of biofilm formation in Escherichia coli. FEMS Microbiol Lett 312:160–168

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara H, Yamamoto K, Ishihama A (2011) Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol 193:2587–2597

    Article  PubMed  CAS  Google Scholar 

  • Olsén A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338(6217):652–655

    Article  PubMed  Google Scholar 

  • Olsén A, Arnqvist A, Hammar M, Normark S (1993) Environmental regulation of curli production in Escherichia coli. Infect Agents Dis 2:272–274

    PubMed  Google Scholar 

  • Perrin C, Briandet R, Jubelin G, Lejeune P, Mandrand-Berthelot MA, Rodrigue A, Dorel C (2009) Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli. Appl Environ Microbiol 75:1723–1733

    Article  PubMed  CAS  Google Scholar 

  • Platt R, Drescher C, Park SK, Phillips GJ (2000) Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid 43:12–23

    Article  PubMed  CAS  Google Scholar 

  • Prigent-Combaret C et al (2001) Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183:7213–7223

    Article  PubMed  CAS  Google Scholar 

  • Prüß BM, Nelms JM, Park C, Wolfe AJ (1994) Mutations in NADH: ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol 176:2143–2150

    PubMed  Google Scholar 

  • Rasband WS (1997–2012) ImageJ, U S National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, (Accessed 12 Dec 2012)

  • Reitzer L (Posting date July 25, 2005) Chapter 3.4.7, Catabolism of amino acids and related compounds. In: A. Böck, R. Curtiss III J. B. Kaper P. D. Karp F. C. Neidhardt T. Nyström J. M. Slauch C. L. Squires and D. Ussery ed. (ed) EcoSal Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, DC

  • Römling U, Rohde M, Olsén A, Normark S, Reinköster J (2000) AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual 2nd edn Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N Y

    Google Scholar 

  • Sitaras C, Beyde A, Malekazari P, Herrington MB (2011a) Light producing reporter plasmids for Escherichia coli K-12 that can be integrated into the chromosome. Plasmid 65:232–238

    Article  PubMed  CAS  Google Scholar 

  • Sitaras C, Naghavi M, Herrington MB (2011b) Sodium dodecyl sulfate-agarose gel electrophoresis for the detection and isolation of amyloid curli fibers. Anal Biochem 408:328–331

    Article  PubMed  CAS  Google Scholar 

  • Tagliabue L, Maciag A, Antoniani D, Landini P (2010) The yddV-dos operon controls biofilm formation through the regulation of genes encoding curli fibers’ subunits in aerobically growing Escherichia coli. FEMS Immunol Med Microbiol 59:477–484

    PubMed  CAS  Google Scholar 

  • Vasudevan SG, Armarego WL, Shaw DC, Lilley PE, Dixon NE, Poole RK (1991) Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Mol Gen Genet 226:49–58

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan SG, Paal B, Armarego WL (1992) Dihydropteridine reductase from Escherichia coli exhibits dihydrofolate reductase activity. Biol Chem Hoppe Seyler 373:1067–1073

    Article  PubMed  CAS  Google Scholar 

  • Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449

    PubMed  CAS  Google Scholar 

  • Waller JC, Alvarez S, Naponelli V, Lara-Nuñez A, Blaby IK, Da Silva V, Ziemak MJ, Vickers TJ, Beverley SM, Edison AS, Rocca JR, Gregory JF 3rd, de Crécy-Lagard V, Hanson AD (2010) A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life. Proc Natl Acad Sci U S A 107:10412–10417

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R (2006) Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62:1014–1034

    Article  PubMed  CAS  Google Scholar 

  • White AP, Gibson DL, Kim W, Kay WW, Surette MG (2006) Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella. J Bacteriol 188:3219–3227

    Article  PubMed  CAS  Google Scholar 

  • White AP, Weljie AM, Apel D, Zhang P, Shaykhutdinov R, Vogel HJ, Surette MG (2010) A global metabolic shift is linked to Salmonella multicellular development. PLoS ONE 5(7):e11814

    Article  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

  • Zakikhany K, Harrington CR, Nimtz M, Hinton JC, Römling U (2010) Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium. Mol Microbiol 77:771–786

    Article  PubMed  CAS  Google Scholar 

  • Zheng D, Constantinidou C, Hobman JL, Minchin SD (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874–5893

    Article  PubMed  CAS  Google Scholar 

  • Zimbro MJ., Power DA, Miller SM, Wilson GE, and Johnson JA. Eds. (2009) Difco™ & BBL™ Manual: manual of microbiological culture media. Sparks, MD 21152, USA, Becton, Dickinson and Company

Download references

Acknowledgments

This research was supported by a Discovery Grant (6727) awarded to M. B. H. by the Natural Sciences and Engineering Council of Canada. We thank the Centre for Structural and Functional Genomics, Concordia University for providing equipment that facilitated this research. We thank the following students who participated in this research: Amanda Beyde, Di Han, Stephanie Little, Tara MacRae, Pegah Malekazari, Jonas Morel, Cédric Nemers, Guillaume Sescousse, Jamieson Thompson-Tevendale, and Cristina Yuntas Yanes. We also thank the researchers who provided us with strains and plasmids. M. B. H. thanks Concordia University for an interesting career.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel B. Herrington.

Additional information

Communicated by Jorge Membrillo-Hernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrington, M.B., Sitaras, C. The influence of CsgD on the expression of genes of folate metabolism and hmp in Escherichia coli K-12. Arch Microbiol 195, 559–569 (2013). https://doi.org/10.1007/s00203-013-0909-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0909-3

Keywords

Navigation