Archives of Microbiology

, Volume 195, Issue 8, pp 537–543 | Cite as

Required characteristics of Paenibacillus polymyxa JB-0501 as potential probiotic

Original Paper

Abstract

The ability of Paenibacillus polymyxa to inhibit the growth of Escherichia coli generic ATCC 25922 (Escherichia coli ATCC 25922) and to adhere to monolayers of the enterocyte-like human cell line Caco-2 was evaluated. P. polymyxa JB-0501 (P. polymyxa JB-0501), found in a livestock feed probiotic supplement, was compared to P. polymyxa reference strain ATCC 43685 and ATCC 7070 (P. polymyxa ATCC) in terms of carbohydrate utilization and resistance to lysozyme, acid, bile salts, and hydrogen peroxide. JB-0501 grew at pH 4.5 and at H2O2 concentrations less than 7.3 μg/ml and presented a higher affinity to hexadecane and decane. Bile salts at 0.2 % inhibited the growth of all three strains. P. polymyxa JB-0501 and P. polymyxa ATCC 43865 adhered to Caco-2 cell monolayers. The percentage of cells that adhered ranged from about 0.35 to 6.5 % and was partially proportional to the number applied. Contact time (from 15 min to 1 h) had little impact on adhesion. P. polymyxa JB-0501 inhibited the growth of E. coli ATCC 25922, as proven by the diffusion tests in agar. Taken together, these results suggested that P. polymyxa JB-0501 has the potential probiotic properties to justify its consideration as a livestock feed supplement.

Keywords

Paenibacillus polymyxa JB-0501 Escherichia coli Caco-2 cells Adhesion Pathogenic bacteria Probiotic properties 

References

  1. Andersson A, Granumb PE, Rönner U (1998) The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int J Food Microbiol 39:93–99PubMedCrossRefGoogle Scholar
  2. Angioi A, Zanetyi S, Sann A, Delogu G, Fadda G (1995) Adhesiveness of Bacillus subtilis strains to epithelial cells cultured in vitro. Microb Ecol Health Dis 8:71–77CrossRefGoogle Scholar
  3. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260PubMedCrossRefGoogle Scholar
  4. Cepeljnik T, Lah B, Narat M, Marinsek-Logar R (2007) Adaptation of adhesion test using Caco-2 cells for anaerobic bacterium Pseudobutyrivibrio xylanivorans, a probiotic candidate. Folia Microbiol 52:367–373CrossRefGoogle Scholar
  5. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768PubMedCrossRefGoogle Scholar
  6. Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, Park SH (2009) Identification of polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191:3350–3358PubMedCrossRefGoogle Scholar
  7. Dave RI, Shah NP (1997) Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int Dairy J 7:31–416CrossRefGoogle Scholar
  8. Doyle RJ, Rosenberg M (1995) Measurement of microbial adhesion to hydrophobic substrata. Methods Enzymol 253:542–550PubMedCrossRefGoogle Scholar
  9. Doyle RJ, Nedjat-Haiem F, Singh JS (1984) Hydrophobic characteristics of Bacillus spores. Cur Microbiol 10:329–333CrossRefGoogle Scholar
  10. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378PubMedCrossRefGoogle Scholar
  11. Fuller R (1992) History and development of probiotics. In: Fuller R (ed) Probiotics. The scientific basis. Chapman and Hall, London, pp 1–9CrossRefGoogle Scholar
  12. Gagnon M, Kheadr E, Le Blay G, Fliss I (2004) In vitro inhibition of Escherichia coli O157:H7 by bifidobacterial strains of human origin. Int J Food Microb 92:69–78CrossRefGoogle Scholar
  13. Gibson GR, Wang X (1994) Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 77:412–442PubMedCrossRefGoogle Scholar
  14. Gilliland SE, Staley TE, Bush LJ (1984) Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J Dairy Sci 67:3045–3051PubMedCrossRefGoogle Scholar
  15. Koshikawa T, Yamazaki M, Yoshimi M, Ogawa S, Yamada A, Watabe K, Tori A (1989) Surface hydrophobicity of spores of Bacillus spp. J Gen Microbiol 135:2717–2722PubMedGoogle Scholar
  16. Kristoffersen SM, Ravnum S, Tourasse NJ, Økstad OA, Kolstø AB, Davies W (2007) Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14570. J Appl Bacteriol 189:5302–5313CrossRefGoogle Scholar
  17. Landman DC, Georgescu DA, Martin Quale J (2008) Polymyxins revisited. Clinical Microbiol Rev 21:449–465CrossRefGoogle Scholar
  18. Lankaputhra EV, Shah NP (1995) Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salts. Cult Dairy Prod J 30:2–7Google Scholar
  19. Naghmouchi K, Paterson L, Forster B, McAllister T, Ohene-Adjei S, Drider D, Teather R, Baah J (2011) Paenibacillus polymyxa JB05-01-1 and its perspectives for food conservation and medical applications. Arch Microbiol 3:169–177CrossRefGoogle Scholar
  20. Naghmouchi K, Hammami R, Fliss I, Teather R, Baah J, Drider D (2012) Colistin A and colistin B among inhibitory substances of Paenibacillus polymyxa JB05-01-1. Arch Microbiol 194:363–370PubMedCrossRefGoogle Scholar
  21. Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J, Herman L, De Vos P, Logan NA, Heyndrickx M (2004) Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54:885–891PubMedCrossRefGoogle Scholar
  22. Selim S, Negrel J, Govaerts C, Gianinazzi S, van Tuinen D (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl Environ Microbiol 71:6501–6507PubMedCrossRefGoogle Scholar
  23. Suskovic J, Brkic B, Matosic S, Maric V (1997) Lactobacillus acidophilus M92 as potential probiotic strain. Milchwissenschaft 52:430–435Google Scholar
  24. Wolf CE, Gibbons WR (1996) Improved method for quantification of the bacteriocin nisin. J Appl Bacteriol 80:453–457PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Lethbridge Research CenterAgriculture and Agri-Food CanadaLethbridgeCanada
  2. 2.Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de TunisEl ManarTunisTunisia
  3. 3.Laboratoire des Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM), UPRES-EA 1026, Polytech’Lille/IUTAUniversité Lille Nord de FranceVilleneuve d’Ascq CedexFrance

Personalised recommendations