Skip to main content
Log in

Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The effect of Ni2+ on the growth and functional gene expression of the pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum has been studied. Compared with the pure culture, the co-culture showed a stronger sulfur and ferrous ion oxidation activity. At 100 mM, A. thiooxidans in co-culture grew faster and had 48 h shorter lag phases. The cell number of A. thiooxidans in co-culture was about 5 times higher than that in pure culture. The existence of A. thiooxidans in co-culture activated the expression of some metal resistance genes in L. ferriphilum at least 16 h in advance. A. thiooxidans in co-culture tends to chose more efficient pathways to transport nickel ion, ensuring the export of heavy metal was faster and more effective than that in pure culture. All the data indicated that there were synergetic interactions between iron- and sulfur-oxidizing bacteria under the stress of Ni2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akcil A, Ciftci H et al (2007) Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Miner Eng 20(3):310–318

    Article  CAS  Google Scholar 

  • Akinci G, Guven DE (2011) Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination 268(1–3):221–226

    Article  CAS  Google Scholar 

  • Ballester A, González F et al (1992) The use of catalytic ions in bioleaching. Hydrometallurgy 29(1–3):145–160

    Article  CAS  Google Scholar 

  • Brenner K, You L et al (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489

    Article  PubMed  CAS  Google Scholar 

  • Cabrera G, Gómez JM et al (2005) Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures. Process Biochem 40(8):2683–2687

    Article  CAS  Google Scholar 

  • Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl Environ Microbiol 68(2):838–845

    Article  PubMed  CAS  Google Scholar 

  • Diels L, Dong Q et al (1995) The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J Ind Microbiol 14(2):142–153

    Article  PubMed  CAS  Google Scholar 

  • Dopson M, Baker-Austin C et al (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149(8):1959–1970

    Article  PubMed  CAS  Google Scholar 

  • Duddridge JE, Wainwright M (1980) Heavy metal accumulation by aquatic fungi and reduction in viability of Gammarus pulex fed Cd2+ contaminated mycelium. Water Res 14(11):1605–1611

    Article  CAS  Google Scholar 

  • Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Fagan M, Saier M Jr (1994) P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol 38(1):57–99

    Article  PubMed  CAS  Google Scholar 

  • Fu B, Zhou H et al (2008) Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. Int Biodeterior Biodegradation 62(2):109–115

    Article  CAS  Google Scholar 

  • Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19(6):550–555

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Haruta S et al (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71(11):7099–7106

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Yin H et al (2011) The effect of the introduction of exogenous strain Acidithiobacillus thiooxidans A01 on functional gene expression, structure and function of indigenous consortium during pyrite bioleaching. Bioresour Technol 102(17):8092–8098

    Article  PubMed  CAS  Google Scholar 

  • Mikolay A, Nies D (2009) The ABC-transporter AtmA is involved in nickel and cobalt resistance of Cupriavidus metallidurans strain CH34. Antonie Van Leeuwenhoek 96(2):183–191

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2–3):313–339

    Article  PubMed  CAS  Google Scholar 

  • Nogami Y et al (1997) Inhibition of sulfur oxidizing activity by nickel ion in Thiobacillus thiooxidans NB1-3 isolated from the corroded concrete. Jpn Soc Biosci Biotechnol Agrochem 61:1373–1375

    Article  CAS  Google Scholar 

  • Novo M, da Silva A et al (2000) Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation. Antonie Van Leeuwenhoek 77(2):187–195

    Article  PubMed  CAS  Google Scholar 

  • Nurmi P, Özkaya B et al (2009) Inhibition kinetics of iron oxidation by Leptospirillum ferriphilum in the presence of ferric, nickel and zinc ions. Hydrometallurgy 97(3–4):137–145

    Article  CAS  Google Scholar 

  • Penev K, Karamanev D (2009) Kinetics of ferrous iron oxidation by Leptospirillum ferriphilum at moderate to high total iron concentrations. Adv Mater Res 71–73:255–258

    Article  Google Scholar 

  • Plumb JJ, McSweeney NJ et al (2008) Growth and activity of pure and mixed bioleaching strains on low grade chalcopyrite ore. Miner Eng 21(1):93–99

    Article  CAS  Google Scholar 

  • Qiu M-q, Xiong S-y et al (2005) A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner Eng 18(9):987–990

    Article  CAS  Google Scholar 

  • Qiu M, Xiong S et al (2006) Efficacy of chalcopyrite bioleaching using a pure and a mixed bacterium. J Univ Sci Technol Beijing Miner Metall Mater 13(1):7–10

    CAS  Google Scholar 

  • Sampson MI, Phillips CV (2001) Influence of base metals on the oxidising ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates, using mesophiles and moderate thermophiles. Miner Eng 14(3):317–340

    Article  CAS  Google Scholar 

  • Watling HR (2008) The bioleaching of nickel-copper sulfides. Hydrometallurgy 91(1–4):70–88

    Article  CAS  Google Scholar 

  • White C, Shaman AK et al (1998) An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotech 16(6):572–575

    Article  CAS  Google Scholar 

  • Wu C-b, Zeng W-m et al (2007) Bioleaching of chalcopyrite by mixed culture of moderately thermophilic microorganisms. J Cent South Univ Technol 14(4):474–478

    Article  CAS  Google Scholar 

  • Zhang Y-s, Qin W-q et al (2008) Bioleaching of chalcopyrite by pure and mixed culture. Trans Nonferr Met Soc China 18(6):1491–1496

    Article  CAS  Google Scholar 

  • Zhang R-b, Wei M-m et al (2009) Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite. Appl Microbiol Biotechnol 81(6):1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Zouboulis AI, Matis KA et al (1997) Biosorption of metals from dilute aqueous solutions. Sep Purif Rev 26(2):255–295

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Basic Research Project of China (No. 2010CB630901), High Tech Research and Development Program (863 Program: 2012AA061502), and National Natural Science Foundation (No. 31070104 and No. 31100033) of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yili Liang or Xueduan Liu.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Yin, H., Jiang, H. et al. Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum . Arch Microbiol 195, 637–646 (2013). https://doi.org/10.1007/s00203-013-0900-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0900-z

Keywords

Navigation