Skip to main content
Log in

Diversity of the major capsid genes (g23) of T4-like bacteriophages in the eutrophic Lake Kotokel in East Siberia, Russia

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Numerous studies revealed high diversity of T4-like bacteriophages in various environments, but so far, little is known about T4-like virus diversity in freshwater bodies, particularly in eutrophic lakes. The present study was aimed at elucidating molecular diversity of T4-like bacteriophages in eutrophic Lake Kotokel located near Lake Baikal by partial sequencing of the major capsid genes (g23) of T4-like bacteriophages. The majority of g23 fragments from Lake Kotokel were most similar to those from freshwater lakes and paddy fields. Despite the proximity and direct water connection between Lake Kotokel and Lake Baikal, g23 sequence assemblages from two lakes were different. UniFrac analysis showed that uncultured T4-like viruses from Lake Kotokel tended to cluster with those from the distant lake of the same trophic status. This fact suggested that the trophic conditions affected the formation of viral populations, particularly of T4-like viruses, in freshwater environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ackermann H-W (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243

    Article  PubMed  CAS  Google Scholar 

  • Belykh OI, Pomazkina GV, Tikhonova IV, Tomberg IV (2007) Characteristics of Lake Baikal summer phytoplankton and autotrophic picoplankton. Inter J Algae 9:247–263

    Article  CAS  Google Scholar 

  • Belykh OI, Sorokovikova EG, Fedorova GA et al (2011) Presence and genetic diversity of microcystin-producing cyanobacteria (Anabaena and Microcystis) in Lake Kotokel (Russia, Lake Baikal Region). Hydrobiologia 671:241–252

    Article  CAS  Google Scholar 

  • Bettarel Y, Sime-Ngando T, Amblard C et al (2003) Virioplankton and microbial communities in aquatic systems: a seasonal study in two lakes of different trophy. Freshw Biol 48:810–820

    Article  Google Scholar 

  • Butina TV, Belykh OI, Maksimenko SY, Belikov SI (2010) Phylogenetic diversity of T4-like bacteriophages in Lake Baikal, East Siberia. FEMS Microbiol Lett 309:122–129

    PubMed  CAS  Google Scholar 

  • Comeau AM, Krisch HM (2008) The capsid of the T4 phage superfamily: the evolution, diversity and structure of some of the most prevalent proteins in the biosphere. Mol Biol Evol 25:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Desplats C, Krisch HM (2003) The diversity and evolution of the T4-type bacteriophages. Res Microbiol 154:259–267

    Article  PubMed  CAS  Google Scholar 

  • Drucker VV, Dutova NV (2009) Bacteriophages as a new trophic link in the ecosystem of the deep-water Lake Baikal. Dokl Biol Sci 427:339–342

    Article  PubMed  CAS  Google Scholar 

  • Filée J, Tétart F, Suttle CA, Krisch HM (2005) Marine T4 type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc Natl Acad Sci USA 102:12471–12476

    Article  PubMed  Google Scholar 

  • Fujihara S, Murase J, Tun CC et al (2010) Low diversity of T4-type bacteriophages in applied rice straw, plant residues and rice roots in Japanese rice soils: estimation from major capsid (g23) composition. Soil Sci Plant Nutr 56:800–812

    Article  CAS  Google Scholar 

  • Fujii T, Nakayama N, Nishida M et al (2008) Novel capsid genes (g23) of T4-type bacteriophages in a Japanese paddy field. Soil Biol Biochem 40:1049–1059

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27

    Article  PubMed  CAS  Google Scholar 

  • Hambly E, Tétart F, Desplats C et al (2001) A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc Natl Acad Sci USA 98:11411–11416

    Article  PubMed  CAS  Google Scholar 

  • Hennes KP, Simon M (1995) Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl Environ Microbiol 61:333–340

    PubMed  CAS  Google Scholar 

  • Huang HZ, Cheng K, Xu M, Zhao YJ (2011) Genetic diversity of T4 virioplankton, inferred from g23 gene, in Wuhan Donghu Lake. China Environ Sci 31:44–447 (in Chinese with English abstract)

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinforma 17:754–755

    Article  CAS  Google Scholar 

  • Jenkins CA, Hayes PK (2006) Diversity of cyanophages infecting the heterocystous filamentous cyanobacterium Nodularia isolated from the brackish Baltic Sea. J Mar Biol Ass UK 86:529–536

    Article  CAS  Google Scholar 

  • Jia Z, Ishihara R, Nakajima Y et al (2007) Molecular characterization of T4-type bacteriophages in a rice field. Environ Microbiol 9:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Korde NV (1968) Bottom-sediments biostratigraphy of Lake Kotokel. In: Galazii GI, Dmitriev GA, Zhuze AP (eds) Mesozoic and cenozoic lakes of Siberia. Nauka, Moscow, pp 150–170 (in Russian)

    Google Scholar 

  • Kuzmich VN (ed) (1988) Bioproductivity of Eutrophic Lakes Irkana and Kotokel in Basin of Lake Baikal. Sbornik nauch trudov GosNIORH 279. Promrybvod, Leningrad (in Russian)

  • Larsen JB, Larsen A, Thyrhaug R et al (2008) Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 levels. Biogeosciences 5:523–533

    Article  Google Scholar 

  • Laybourn-Parry J, Hofer J, Sommaruga R (2001) Viruses in Antarctic freshwater and saline lakes. Freshw Biol 46:1279–1287

    Article  Google Scholar 

  • Lei AP, Hu ZL, Wang J et al (2005) Structure of the phytoplankton community and its relationship to water quality in Donghu Lake, Wuhan, China. J Integr Plant Biol 47:27–37

    Article  CAS  Google Scholar 

  • Liu YM, Yuan XP, Zhang QY (2006) Spatial distribution and morphologic diversity of virioplankton in Lake Donghu, China. Acta Oecol 29:328–334

    Article  Google Scholar 

  • Liu J, Wang G, Zheng C et al (2011) Specific assemblages of major capsid genes (g23) of T4-type bacteriophages isolated from upland black soils in Northeast China. Soil Biol Biochem 43:1980–1984

    Article  CAS  Google Scholar 

  • Liu J, Wang G, Wang Q et al (2012) Phylogenetic diversity and assemblage of major capsid genes (g23) of T4-type bacteriophages in paddy field soils during rice growth season in Northeast China. Soil Sci Plant Nutr 58(4):435–444

    Article  Google Scholar 

  • Logares R, Bråte J, Bertilsson S et al (2009) Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol 17:414–422

    Article  PubMed  CAS  Google Scholar 

  • López-Bueno A, Tamames J, Velázquez D et al (2009) High diversity of the viral community from an Antarctic Lake. Science 326:858–861

    Article  PubMed  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–11440

    Article  PubMed  CAS  Google Scholar 

  • Nakayama N, Asakawa S, Kimura M (2009) Comparison of g23 gene sequence diversity between Novosphingobium and Sphingomonas phages and phage communities in the floodwater of a Japanese paddy field. Soil Biol Biochem 41:179–185

    Article  CAS  Google Scholar 

  • Newton RJ, Jones SE, Eiler A et al (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  PubMed  CAS  Google Scholar 

  • Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Article  Google Scholar 

  • Sullivan MB, Coleman ML, Weigele P et al (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3(5):e144

    Article  PubMed  Google Scholar 

  • Toro M, Camacho A, Rochera C et al (2007) Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biol 30:635–649

    Article  Google Scholar 

  • Vollenweider RA, Kerekes J (1982) Eutrophication of waters. Monitoring assessment and control. Organization for Economic Co-Operation and Development (OECD), Paris

    Google Scholar 

  • Vöros L, Callieri C, Balogh K, Bertoni R (1998) Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370:117–125

    Article  Google Scholar 

  • Wang G, Hayashi M, Saito M et al (2009a) Survey of major capsid genes (g23) of T4-type bacteriophages in Japanese paddy field soils. Soil Biol Biochem 41:13–20

    Article  CAS  Google Scholar 

  • Wang G, Jin J, Asakawa S, Kimura M (2009b) Survey of major capsid genes (g23) of T4-type bacteriophages in rice fields in Northeast China. Soil Biol Biochem 41:423–427

    Article  CAS  Google Scholar 

  • Weinbauer MG, Höfle MG (1998) Size-specific mortality of lake bacterioplankton by natural virus communities. Aquat Microb Ecol 15:103–113

    Article  Google Scholar 

  • Wilhelm SW, Smith REH (2000) Bacterial carbon production in Lake Erie is influenced by viruses and solar radiation. Can J Fish Aquat Sci 57:317–326

    Article  Google Scholar 

  • Williamson SJ, Rusch DB, Yooseph S et al (2008) The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS ONE 3:e1456

    Article  PubMed  Google Scholar 

  • Wu QL, Xing P, Liu W-T (2010) East Tibetan lakes harbour novel clusters of picocyanobacteria as inferred from the 16S–23S rRNA internal transcribed spacer sequences. Microb Ecol 59:614–622

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Wang G, Liu J et al (2013) Characterization of the major capsid genes (g23) of T4-type bacteriophages in the wetlands of northeast China. Microb Ecol. doi:10.1007/s002480120158z

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Tatyana Sherbakova (Limnological Institute, SB RAS), who helped in execution of the paper. This study was supported by the RFBR, research project nos. 10-04-01613, 11-04-92220, and by the SB RAS Project, no. 55.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana V. Butina.

Additional information

Communicated by Shuang-Jiang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butina, T.V., Belykh, O.I., Potapov, S.A. et al. Diversity of the major capsid genes (g23) of T4-like bacteriophages in the eutrophic Lake Kotokel in East Siberia, Russia. Arch Microbiol 195, 513–520 (2013). https://doi.org/10.1007/s00203-013-0884-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0884-8

Keywords

Navigation