Skip to main content
Log in

Impairment of ribosomal subunit synthesis in aminoglycoside-treated ribonuclease mutants of Escherichia coli

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The bacterial ribosome is an important target for many antimicrobial agents. Aminoglycoside antibiotics bind to both 30S and 50S ribosomal subunits, inhibiting translation and subunit formation. During ribosomal subunit biogenesis, ribonucleases (RNases) play an important role in rRNA processing. E. coli cells deficient for specific processing RNases are predicted to have an increased sensitivity to neomycin and paromomycin. Four RNase mutant strains showed an increased growth sensitivity to both aminoglycoside antibiotics. E. coli strains deficient for the rRNA processing enzymes RNase III, RNase E, RNase G or RNase PH showed significantly reduced subunit amounts after antibiotic treatment. A substantial increase in a 16S RNA precursor molecule was observed as well. Ribosomal RNA turnover was stimulated, and an enhancement of 16S and 23S rRNA fragmentation was detected in E. coli cells deficient for these enzymes. This work indicates that bacterial RNases may be novel antimicrobial targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arraiano CM, Yancey SD, Kushner SR (1988) Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12. J Bacteriol 170:4625–4633

    PubMed  CAS  Google Scholar 

  • Arya DP (ed) (2007) Aminoglycoside antibiotics. Wiley, Hoboken

    Google Scholar 

  • Babitzke P, Granger L, Olszewski J, Kushner SR (1993) Analysis of mRNA decay and rRNA processing in Escherichia coli multiple mutants carrying a deletion in RNase III. J Bacteriol 175:229–239

    PubMed  CAS  Google Scholar 

  • Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM, Hirokawa G, Kaji H, Kaji A, Cate JH (2007) Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol 14:727–732

    Article  PubMed  CAS  Google Scholar 

  • Brosius J, Dull TJ, Noller HF (1980) Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 77:201–204

    Article  PubMed  CAS  Google Scholar 

  • Cairrão F, Arraiano CM (2006) The role of endoribonucleases in the regulation of RNase R. Biochem Biophys Res Commun 343:731–737

    Article  PubMed  Google Scholar 

  • Champney WS (2006) The other target for ribosomal antibiotics: inhibition of bacterial ribosomal subunit formation. Infect Disord Drug Targets 6:377–390

    Article  PubMed  CAS  Google Scholar 

  • Champney WS (ed) (2008) New antibiotic targets. Humana Press Inc., Totowa

    Google Scholar 

  • Champney WS, Tober CL (2000) Specific inhibition of 50S ribosomal subunit formation in Staphylococcus aureus cells by 16-membered macrolide, lincosamide, and streptogramin B antibiotics. Curr Microbiol 41:126–135

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Deutscher MP (2010) RNase R is a highly unstable protein regulated by growth phase and stress. RNA 16:667–672

    Article  PubMed  CAS  Google Scholar 

  • Cheng ZF, Deutscher MP (2003) Quality control of ribosomal RNA mediated by polynucleotide phosphorylase and RNase R. Proc Natl Acad Sci USA 100:6388–6393

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  PubMed  CAS  Google Scholar 

  • Davies BW, Köhrer C, Jacob AI, Simmons LA, Zhu J, Aleman LM, Rajbhandary UL, Walker GC (2010) Role of Escherichia coli YbeY, a highly conserved protein, in rRNA processing. Mol Microbiol 78:506–518

    Article  PubMed  CAS  Google Scholar 

  • Deutscher MP (2009) Maturation and degradation of ribosomal RNA in bacteria. Prog Mol Biol Transl Sci 85:369–391

    Article  PubMed  CAS  Google Scholar 

  • Długosz M, Trylska J (2009) Aminoglycoside association pathways with the 30S ribosomal subunit. J Phys Chem B 113:7322–7330

    Article  PubMed  Google Scholar 

  • Donovan WP, Kushner SR (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci USA 83:120–124

    Article  PubMed  CAS  Google Scholar 

  • Eidem TM, Roux CM, Dunman PM (2012) RNA decay: a novel therapeutic target in bacteria. Wiley Interdiscip Rev RNA 3(3):443–454

    Google Scholar 

  • Foster C, Champney WS (2008) Characterization of a 30S ribosomal subunit assembly intermediate found in Escherichia coli cells growing with neomycin or paromomycin. Arch Microbiol 189:441–449

    Article  PubMed  CAS  Google Scholar 

  • Frazier AD, Champney WS (2012a) Inhibition of Ribosomal Subunit Synthesis in Escherichia coli by the vanadyl ribonucleoside complex. Arch Microbiol (In Submission)

  • Frazier AD, Champney WS (2012b) The vanadyl ribonucleoside complex inhibits ribosomal subunit formation in Staphylococcus aureus. J Antimicrob Chemother 67(9):2152–2157

    Google Scholar 

  • Gesteland RF (1966) Isolation and characterization of ribonuclease I mutants of Escherichia coli. J Mol Biol 16:67–84

    Article  PubMed  CAS  Google Scholar 

  • Gutgsell NS, Jain C (2012) Role of precursor sequences in the ordered maturation of E. coli 23S ribosomal RNA. RNA 18:345–353

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa G, Nijman RM, Raj VS, Kaji H, Igarashi K, Kaji A (2005) The role of ribosome recycling factor in dissociation of 70S ribosomes into subunits. RNA 11:1317–1328

    Article  PubMed  CAS  Google Scholar 

  • Jett BD, Hatter KL, Huycke MM, Gilmore MS (1997) Simplified agar plate method for quantifying viable bacteria. Biotechniques 23:648–650

    PubMed  CAS  Google Scholar 

  • Kaczanowska M, Rydén-Aulin M (2007) Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 71:477–494

    Article  PubMed  CAS  Google Scholar 

  • Kushner SR, Maples VF, Champney WS (1977) Conditionally lethal ribosomal protein mutants: characterization of a locus required for modification of 50S subunit proteins. Proc Natl Acad Sci USA 74:467–471

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Bernstein JA, Cohen SN (2002) RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol Microbiol 43:1445–1456

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Pandit S, Deutscher MP (1999) RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J 18:2878–2885

    Article  PubMed  CAS  Google Scholar 

  • Mehta R, Champney WS (2002) 30S ribosomal subunit assembly is a target for inhibition by aminoglycosides in Escherichia coli. Antimicrob Agents Chemother 46:1546–1549

    Article  PubMed  CAS  Google Scholar 

  • Mehta R, Champney WS (2003) Neomycin and paromomycin inhibit 30S ribosomal subunit assembly in Staphylococcus aureus. Curr Microbiol 47:237–243

    Article  PubMed  CAS  Google Scholar 

  • Rio DC, Ares M Jr, Hannon GJ, Nilsen TW (2011) RNA: a laboratory manual. Cold Spring Harbor Protocols, New York

    Google Scholar 

  • Rosen T (2011) Antibiotic resistance: an editorial review with recommendations. J Drugs Dermatol 10:724–733

    PubMed  Google Scholar 

  • Scheunemann AE, Graham WD, Vendeix FA, Agris PF (2010) Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA. Nucleic Acids Res 38:3094–3105

    Article  PubMed  CAS  Google Scholar 

  • Schroeder R, Waldsich C, Wank H (2000) Modulation of RNA function by aminoglycoside antibiotics. EMBO J 19:1–9

    Article  PubMed  CAS  Google Scholar 

  • Silvers JA, Champney WS (2005) Accumulation and turnover of 23S ribosomal RNA in azithromycin-inhibited ribonuclease mutant strains of Escherichia coli. Arch Microbiol 184:66–77

    Article  PubMed  CAS  Google Scholar 

  • Song WS, Lee M, Lee K (2011) RNase G participates in processing of the 5′-end of 23S ribosomal RNA. J Microbiol 49:508–511

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JA (2005) Improving on nature: antibiotics that target the ribosome. Curr Opin Microbiol 8:534–542

    Article  PubMed  CAS  Google Scholar 

  • Usary J, Champney WS (2001) Erythromycin inhibition of 50S ribosomal subunit formation in Escherichia coli cells. Mol Microbiol 40:951–962

    Article  PubMed  CAS  Google Scholar 

  • Wallis MG, Schroeder R (1997) The binding of antibiotics to RNA. Prog Biophys Mol Biol 67:141–154

    Article  PubMed  CAS  Google Scholar 

  • Weatherford SC, Rosen L, Gorelic L, Apirion D (1972) Escherichia coli strains with thermolabile ribonuclease II activity. J Biol Chem 247:5404–5408

    PubMed  CAS  Google Scholar 

  • Zinner SH (2007) Antibiotic use: present and future. New Microbiol 30:321–325

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Mutant RNase-deficient E. coli strains were gifts from Dr. Murray Deutscher (University of Miami) and Dr. Sidney Kushner (University of Georgia). This research was supported by an NIH AREA grant and an ETSU Graduate School research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Champney.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frazier, A.D., Champney, W.S. Impairment of ribosomal subunit synthesis in aminoglycoside-treated ribonuclease mutants of Escherichia coli . Arch Microbiol 194, 1033–1041 (2012). https://doi.org/10.1007/s00203-012-0839-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0839-5

Keywords

Navigation