Skip to main content
Log in

Roles of DNA repair and membrane integrity in heat resistance of Deinococcus radiodurans

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

To study the effects of heat shock on Deinococcus radiodurans and the role of DNA repair in high temperature resistance, different strains of D. radiodurans (wild type, recA, irrE, and pprA) were treated with temperatures ranging from 40 to 100 °C under wet and dry conditions. The mutant strains were more sensitive to wet heat of ≥60 °C and dry heat of ≥80 °C than the wild type. Both wild-type and DNA repair-deficient strains were much more resistant to high temperatures when exposed in the dried state as opposed to cells in suspension. Molecular staining techniques with the wild-type strain revealed that cells in the dried state were able to retain membrane integrity after drying and subsequent heat exposure, while heat-exposed cells in suspension showed significant loss of membrane integrity and respiration activity. The results suggest that the repair of DNA damage (e.g., DNA double-strand breaks by RecA and PprA) is essential after treatment with wet heat at temperatures >60 °C and dry heat >80 °C, and the ability of D. radiodurans to stabilize its plasma membrane during dehydration might represent one aspect in the protection of dried cells from heat-induced membrane damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan D (1956) Studies on a radio-resistant Micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol 10:575–578

    Google Scholar 

  • Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224

    Article  PubMed  CAS  Google Scholar 

  • Battista JR, Earl AM, Park M-J (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7:362–365

    Article  PubMed  CAS  Google Scholar 

  • Battista JR, Park M-J, McLemore AE (2001) Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133–139

    Article  PubMed  CAS  Google Scholar 

  • Bauermeister A, Bentchikou E, Moeller R, Rettberg P (2009) Roles of PprA, IrrE, and RecA in the resistance of Deinococcus radiodurans to germicidal and environmentally relevant UV radiation. Arch Microbiol 191:913–918

    Article  PubMed  CAS  Google Scholar 

  • Bauermeister A, Moeller R, Reitz G, Sommer S, Rettberg P (2011) Effect of relative humidity on Deinococcus radiodurans‘s resistance to prolonged desiccation, heat, ionizing radiation, germicidal and environmentally relevant UV radiation. Microb Ecol 61:715–722

    Article  PubMed  CAS  Google Scholar 

  • Billi D, Potts M (2008) Life and death of dried prokaryotes. Res Microbiol 153:7–12

    Article  Google Scholar 

  • Blasius M, Huebscher U, Sommer S (2008) Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 43:221–238

    Article  PubMed  CAS  Google Scholar 

  • Bonacossa de Almeida C, Coste G, Sommer S, Bailone A (2002) Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics 268:28–41

    Article  PubMed  CAS  Google Scholar 

  • Crowe LM, Crowe JH (1992) Anhydrobiosis: a strategy for survival. Adv Space Res 12:4239–4247

    Article  Google Scholar 

  • Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Kiang JG, Fukumoto R, Lee D-Y, Wehr NB, Viteri GA, Berlett BS, Levine RL (2010) Small molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One 5:e12570. doi:10.1371/journal.pone.0012570

    Article  PubMed  Google Scholar 

  • Davidson JF, Whyte B, Bissinger PH, Schiestl RH (1996) Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5116–5121

    Article  PubMed  CAS  Google Scholar 

  • Earl AM, Mohundro MM, Mian IS, Battista JR (2002) The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol 184:6216–6224

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat shock proteins, molecular chaperones, and the stress response. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  • Fox K, Eder BD (1969) Comparison of survivor curves of Bacillus subtilis spores subjected to wet and dry heat. J Food Sci 34:518–521

    Article  Google Scholar 

  • Fredrickson JK, Li SM, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403

    Article  PubMed  CAS  Google Scholar 

  • Gomez RF (1977) Nucleic acid damage in thermal inactivation of vegetative microorganisms. Adv Biochem Eng 5:49–67

    Article  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  • Hua Y, Narumi I, Gao G, Tian B, Satoh K, Kitayama S, Shen B (2003) PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun 306:354–360

    Article  PubMed  CAS  Google Scholar 

  • Kim J-I, Cox MM (2002) The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. PNAS 99:7917–7921

    Article  PubMed  CAS  Google Scholar 

  • Kim I-S, Moon H-Y, Yun H-S, Jin I (2006) Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377. J Microbiol 44:492–501

    PubMed  CAS  Google Scholar 

  • Kota S, Misra HS (2006) PprA: a protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. Appl Microbiol Biotechnol 72:790–796

    Article  PubMed  CAS  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    PubMed  CAS  Google Scholar 

  • Krisko A, Radman M (2010) Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proc Natl Acad Sci USA 107:14373–14377

    Article  PubMed  CAS  Google Scholar 

  • Lippert K, Galinski EA (1992) Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing, and drying. Appl Microbiol Biotechnol 37:61–65

    Article  CAS  Google Scholar 

  • Lu H, Gao G, Xu G, Fan L, Yin L, Shen B, Hua Y (2009) Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage. Mol Cell Proteomics 8:481–491

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79

    Article  PubMed  CAS  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    PubMed  CAS  Google Scholar 

  • Matuszewska E, Kwiatkowska J, Kuczynska-Wisnik D, Laskowska E (2008) Escherichia coli heat-shock proteins IbpA/B are involved in resistance to oxidative stress induced by copper. Microbiol 154:1739–1747

    Article  CAS  Google Scholar 

  • Moeller R, Horneck G, Rabbow E, Reitz G, Meyer C, Hornemann U, Stöffler D (2008) Resistance of Bacillus subtilis spores to ultra-high shock pressures simulating hypervelocity impacts: role of DNA protection and repair. Appl Environ Microbiol 74:6682–6689

    Article  PubMed  CAS  Google Scholar 

  • Moeller R, Wassmann M, Reitz G, Setlow P (2011) Effect of radioprotective agents in sporulation medium on Bacillus subtilis spore resistance to hydrogen peroxide, wet heat and germicidal and environmentally relevant UV radiation. J Appl Microbiol 110:1485–1495

    Article  PubMed  CAS  Google Scholar 

  • Narumi I, Satoh K, Cui S, Funayama T, Kitayama S, Watanabe H (2004) PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 54:278–285

    Article  PubMed  CAS  Google Scholar 

  • Pellon JR, Ulmer KM, Gomez RF (1980) Heat damage to the chromosome of Escherichia coli K-12. Appl Environ Microbiol 40:358–364

    PubMed  CAS  Google Scholar 

  • Pogoda de la Vega U, RettbergP ReitzG (2007) Simulation of the environmental climate conditions on Martian surface and its effect on Deinococcus radiodurans. Adv Space Res 40:1672–1677

    Article  Google Scholar 

  • Pogoda de la Vega U, Rettberg P, Douki T, Cadet J, Horneck G (2005) Sensitivity of polychromatic UV-radiation of strains of Deinococcus radiodurans differing in their DNA repair capacity. Int J Radiat Biol 81:601–611

    Article  PubMed  CAS  Google Scholar 

  • Potts M (2001) Desiccation tolerance: a simple process? Trends Microbiol 9:553–559

    Article  PubMed  CAS  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat, and chemicals. J Appl Microbiol 101:514–525

    Article  PubMed  CAS  Google Scholar 

  • Setlow B, Setlow P (1994) Heat inactivation of Bacillus subtilis spores lacking small, acid-soluble spore proteins is accompanied by generation of abasic sites in spore DNA. J Bacteriol 176:2111–2113

    PubMed  CAS  Google Scholar 

  • Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol R 75:133–191

    Article  CAS  Google Scholar 

  • Slade D, Lindner AB, Paul G, Radman M (2009) Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136:1044–1055

    Article  PubMed  CAS  Google Scholar 

  • Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Earl AM, Howell HA, Park MJ, Eisen JA, Peterson SN, Battista JR (2004) Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168:21–33

    Article  PubMed  Google Scholar 

  • Tsuchido T, Katsui N, Takeuchi A, Takano M, Shibasaki I (1985) Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appl Environ Microbiol 50:298–303

    PubMed  CAS  Google Scholar 

  • Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, Lindner AB, Radman M (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Ms. Andrea Schröder for her excellent skillful technical assistance during the sample preparation and analyses. The authors would like to express their thanks to Dr. Esma Bentchikou for providing the DNA repair-deficient strains of D. radiodurans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Moeller.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauermeister, A., Hahn, C., Rettberg, P. et al. Roles of DNA repair and membrane integrity in heat resistance of Deinococcus radiodurans . Arch Microbiol 194, 959–966 (2012). https://doi.org/10.1007/s00203-012-0834-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0834-x

Keywords

Navigation