Skip to main content
Log in

Study of the influence of sporulation conditions on heat resistance of Geobacillus stearothermophilus used in the development of biological indicators for steam sterilization

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Biological indicators are important tools in infection control via sterilization process monitoring. The use of a standardized spore crop with a well-defined heat resistance will guarantee the quality of a biological indicator. Ambient factors during sporulation can affect spore characteristics and properties, including heat resistance. The aim of this study is to evaluate the main sporulation factors responsible for heat resistance in Geobacillus stearothermophilus, a useful biological indicator for steam sterilization. A sequence of a three-step optimization of variables (initial pH, nutrient concentration, tryptone, peptone, beef extract, yeast extract, manganese sulfate, magnesium sulfate, calcium chloride and potassium phosphate) was carried out to screen those that have a significant influence on heat resistance of produced spores. The variable exerting greatest influence on G. stearothermophilus heat resistance during sporulation was found to be the initial pH. Lower nutrient concentration and alkaline pH around 8.5 tended to enhance decimal reduction time at 121 °C (D121°C). A central composite design enabled a fourfold enhancement in heat resistance, and the model obtained accurately describes positive pH and negative manganese sulfate concentration influence on spore heat resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amaha M, Ordal JZ (1957) Effect of divalent cations in the sporulation medium on the thermal death rate of Bacillus coagulans var. thermoacidurans. J Bacteriol 74:596–604

    PubMed  CAS  Google Scholar 

  • Beaman TC, Gerhardt P (1986) Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization and thermal adaptation. Appl Environ Microbiol 52:1242–1246

    PubMed  CAS  Google Scholar 

  • Bender GR, Marquis RE (1985) Spore heat resistance and specific mineralization. Appl Environ Microbiol 50:1414–1421

    PubMed  CAS  Google Scholar 

  • Bovallius A, Zacharias B (1971) Variations in the metal content of some commercial media and their effect on microbial growth. Appl Microbiol 22:260–262

    PubMed  CAS  Google Scholar 

  • Cazemier AE, Wagenaars SFM, Steeg PF (2001) Effect of sporulation and recovery medium on the heat resistance and amount of injury of spores from spoilage bacilli. J Appl Microbiol 90:761–777

    Article  PubMed  CAS  Google Scholar 

  • Charney J, Fisher WP, Hegarty CP (1951) Manganese as an essential element for sporulation in the genus Bacillus. J Bacteriol 62:145–148

    PubMed  CAS  Google Scholar 

  • Cheung HY, Vitkovic L, Brown MRW (1982) Toxic effect of manganese on growth and sporulation of Bacillus stearothermophilus. J Gen Microbiol 128:2345–2402

    Google Scholar 

  • Craven SE (1990) The effect of the pH of the sporulation environment on the heat resistance of Clostridium perfingens spores. Curr Microbiol 22:233–237

    Article  Google Scholar 

  • FDA—Food and Drug Administration (2007) Guidance for industry and FDA staff—biological indicator (BI) Intended to monitor sterilizers used in heath care facilities: remarket Notification [510(k)] Submissions

  • Feeherry FE, Munsey DT, Rowley ADB (1987) Thermal inactivation and injury of Bacillus stearothermophilus spores. Appl Environ Microbiol 53:365–370

    PubMed  CAS  Google Scholar 

  • Ghosh S, Ramirez-Peralta A, Gaidamakova E, Zhang P, Li YQ, Daly MJ, Setlow P (2011) Effects of Mn levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide. J Appl Microbiol 111:663–670

    Article  PubMed  CAS  Google Scholar 

  • Gould GW, Dring GJ (1975) Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex. Nat 258:402–405

    Article  CAS  Google Scholar 

  • Granger AC, Gaidamakova EK, Matrosova VY, Daly MJ, Setlow P (2011) Effects of Mn and Fe levels on Bacillus subtilis spore resistance and effects of Mn2+, other divalent cations, orthophosphate, and dipicolinic acid on protein resistance to ionizing radiation. Appl Environ Microbiol 77:32–40

    Article  PubMed  CAS  Google Scholar 

  • Grant CL, Pramer D (1962) Minor element composition of yeast extract. J Bacteriol 84:869–870

    PubMed  CAS  Google Scholar 

  • Hoxey EV, Soper CJ, Davies DJ (1985) Biological indicators for low temperature steam formaldehyde sterilization: effect of defined media on sporulation, germination index and moist heat resistance at 110 degrees C of Bacillus strains. J Appl Bacteriol 58:207–214

    Article  PubMed  CAS  Google Scholar 

  • International Standard ISO 11138-3 (2006) Sterilization of health care products—Biological indicators Part 3: biological indicators for moist heat sterilization processes, 2nd edition

  • Kihm DJ, Hutton MT, Hanlin JH, Johnson EA (1990) Influence of transition metals added during sporulation on heat resistance of Clostridium botulinum 113B Spores. Appl Environ Microbiol 56:681–685

    PubMed  CAS  Google Scholar 

  • Latimer JM, Matsen JM (1977) Microwave oven irradiation as a method for bacterial decontamination in a clinical microbiology laboratory. J Clin Microbiol 6:340–342

    PubMed  CAS  Google Scholar 

  • Marquis RE, Bender GR (1985) Mineralization and heat resistance of bacterial spores. J Bacteriol 161:789–791

    PubMed  CAS  Google Scholar 

  • Marquis RE, Sim J, Shin SY (1994) Molecular mechanisms of resistance to heat and oxidative damage. J Appl Bacteriol Symp Suppl 76:40–48

    Article  Google Scholar 

  • Mazas M, López M, González I, Bernardo A, Martín R (1997) Effects of sporulation pH on the heat resistance and the sporulation of Bacillus cereus. Lett Appl Microbiol 25:331–334

    Article  PubMed  CAS  Google Scholar 

  • Melly E, Genest PC, Gilmore ME, Little S, Popham DL (2002) Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J Appl Microbiol 92:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Minh HN, Durand A, Loison P, Perrier-Cornet JM, Gervais P (2011) Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure. Appl Microbiol Biotechnol 90:1409–1417

    Article  Google Scholar 

  • Palop A, Sala FJ, Condon S (1999) Heat resistance of native and demineralized spores of Bacillus subtilis sporulated at different temperatures. Appl Environ Microbiol 65:1316–1319

    PubMed  CAS  Google Scholar 

  • Penna TCV, Machoshvili IA, Taqueda MES, Ishii M (2000) The effect of media composition on the thermal resistance of Bacillus stearothermophilus. PDA J Pharm Sci Technol 54:398–412

    PubMed  CAS  Google Scholar 

  • Penna TCV, Machoshvili IA, Ishii M (2003) Effect of media on spore yield and thermal resistance of Bacillus stearothermophilus. Appl Biochem Biotechnol 106:287–294

    Article  Google Scholar 

  • Rowe JJ, Goldberg ID, Amelunten RE (1975) Development of defined and minimal media for the growth of Bacillus stearothermophilus. J Bacteriol 124:279–284

    PubMed  CAS  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to radiation, heat and chemicals. J Appl Microbiol 101:514–525

    Article  PubMed  CAS  Google Scholar 

  • Smith GM, Kopelman M, Jones A, Pflug IJ (1982) Effect of environmental conditions during heating on commercial spore strip performance. Appl Environ Microbiol 44:12–18

    PubMed  CAS  Google Scholar 

  • Unger-Bimczok B, Kottke V, Hertel C, Rauschnabel J (2008) The influence of humidity, hydrogen peroxide concentration, and condensation on the inactivation of Geobacillus stearothermophilus spores with hydrogen peroxide vapor. J Pharm Innov 3:123–133

    Article  Google Scholar 

  • USP—United States Pharmacopeia XXXI (2008) Biological indicators resistance and performance tests. In: The United States Pharmacopeia, 31th rev. United States Pharmacopoeia Convection, Rockville, MD

  • Wright AM, Hoxey EV, Soper CJ, Davies DJG (1995) Biological indicators for low temperature steam and formaldehyde sterilization: the effect of defined media on sporulation, growth index and formaldehyde resistance of spores of Bacillus stearothermophilus strains. J Appl Bacteriol 79:432–438

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Kawai Y, Inoue N, Shinano H (1997) Influence of sporulation medium and divalent ions on the heat resistance of Alicyclobacillus acidoterrestris spores. Lett Appl Microbiol 25:153–156

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belquis P. Guizelini.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guizelini, B.P., Vandenberghe, L.P.S., Sella, S.R.B.R. et al. Study of the influence of sporulation conditions on heat resistance of Geobacillus stearothermophilus used in the development of biological indicators for steam sterilization. Arch Microbiol 194, 991–999 (2012). https://doi.org/10.1007/s00203-012-0832-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0832-z

Keywords

Navigation