Skip to main content
Log in

Differential expression of the transcription factors MarA, Rob, and SoxS of Salmonella Typhimurium in response to sodium hypochlorite: down-regulation of rob by MarA and SoxS

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

To survive, Salmonella enterica serovar Typhimurium (S. Typhimurium) must sense signals found in phagocytic cells and modulate gene expression. In the present work, we evaluated the expression and cross-regulation of the transcription factors MarA, Rob, and SoxS in response to NaOCl. We generated strains ΔsoxS and ΔmarA, which were 20 times more sensitive to NaOCl as compared to the wild-type strain; while Δrob only 5 times. Subsequently, we determined that marA and soxS transcript and protein levels were increased while those of rob decreased in a wild-type strain treated with NaOCl. To assess if changes in S. Typhimurium after exposure to NaOCl were due to a cross-regulation, as in Escherichia coli, we evaluated the expression of marA, soxS, and rob in the different genetic backgrounds. The positive regulation observed in the wild-type strain of marA and soxS was retained in the Δrob strain. As in the wild-type strain, rob was down-regulated in the ΔmarA and ΔsoxS treated with NaOCl; however, this effect was decreased. Since rob was down-regulated by both factors, we generated a ΔmarA ΔsoxS strain finding that the negative regulation was abolished, confirming our hypothesis. Electrophoretic mobility shift assays using MarA and SoxS confirmed an interaction with the promoter of rob.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alekshun M, Levy S (1999) Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro. J Bacteriol 181:4669–4672

    PubMed  CAS  Google Scholar 

  • Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944

    PubMed  CAS  Google Scholar 

  • Bennik MH, Pomposiello PJ, Thorne DF, Demple B (2000) Defining a rob regulon in Escherichia coli by using transposon mutagenesis. J Bacteriol 182:3794–3801

    Article  PubMed  CAS  Google Scholar 

  • Bore E, Hébraud M, Chafsey I, Chambon C, Skjaeret C, Moen B, Møretrø T, Langsrud Ø, Rudi K, Langsrud S (2007) Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses. Microbiology 153:935–946

    Article  PubMed  CAS  Google Scholar 

  • Chollet R, Bollet C, Chevalier J, Malléa M, Pagès JM, Davin-Regli A (2002) mar operon involved in multidrug resistance of Enterobacter aerogenes. Antimicrob Agents Chemother 46:1093–1097

    Article  PubMed  CAS  Google Scholar 

  • Chollet R, Chevalier J, Bollet C, Pages JM, Davin-Regli A (2004) RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother 48:2518–2523

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • De la Cruz MA, Fernández-Mora M, Guadarrama C, Flores-Valdez MA, Bustamante VH, Vázquez A, Calva E (2007) LeuO antagonizes H–NS and StpA-dependent repression in Salmonella enterica ompS1. Mol Microbiol 66:727–743

    Article  PubMed  Google Scholar 

  • Dukan S, Touati D (1996) Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol 178:6145–6150

    PubMed  CAS  Google Scholar 

  • Dukan S, Dadon S, Smulski DR, Belkin S (1996) Hypochlorous acid activates the heat shock and soxRS systems of Escherichia coli. Appl Environ Microbiol 62:4003–4008

    PubMed  CAS  Google Scholar 

  • Gil F, Hernández-Lucas I, Polanco R, Pacheco N, Collao B, Villarreal JM, Nardocci G, Calva E, Saavedra CP (2009) SoxS regulates the expression of the Salmonella enterica serovar Typhimurium ompW gene. Microbiology 155:2490–2497

    Article  PubMed  CAS  Google Scholar 

  • Giró M, Carrillo N, Krapp AR (2006) Glucose-6-phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during the soxRS response of Escherichia coli. Microbiology 152:1119–1128

    Article  PubMed  Google Scholar 

  • Hassan HM, Fridovich I (1979) Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385–395

    Article  PubMed  CAS  Google Scholar 

  • Hassett D, Cohen M (1989) Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J 3:2574–2582

    PubMed  CAS  Google Scholar 

  • Jair KW, Martin RG, Rosner JL, Fujita N, Ishihama A, Wolf RE Jr (1995) Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. J Bacteriol 177:7100–7104

    PubMed  CAS  Google Scholar 

  • Jair KW, Yu X, Skarstad K, Thöny B, Fujita N, Ishihama A, Wolf RE Jr (1996) Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. J Bacteriol 178:2507–2513

    PubMed  CAS  Google Scholar 

  • Khan AU, Kasha M (1994) Singlet molecular oxygen evolution upon simple acidification of aqueous hypochlorite: application to studies on the deleterious health effects of chlorinated drinking water. Proc Natl Acad Sci USA 91:12362–12364

    Article  PubMed  CAS  Google Scholar 

  • Kwon HJ, Bennik MH, Demple B, Ellenberger T (2000) Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Nat Struct Biol 7:424–430

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Lee KL, Yeo WS, Park SJ, Roe JH (2009) SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli. J Bacteriol 191:4441–4450

    Article  PubMed  CAS  Google Scholar 

  • Leyer GJ, Johnson EA (1997) Acid adaptation sensitizes Salmonella typhimurium to hypochlorous acid. Appl Environ Microbiol 63:461–467

    PubMed  CAS  Google Scholar 

  • Martin RG, Rosner JL (2002) Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data. Mol Microbiol 44:1611–1624

    Article  PubMed  CAS  Google Scholar 

  • Martin RG, Jair KW, Wolf RE Jr, Rosner JL (1996) Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. J Bacteriol 178:2216–2223

    PubMed  CAS  Google Scholar 

  • Martin RG, Gillette WK, Rhee S, Rosner JL (1999) Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 34:431–441

    Article  PubMed  CAS  Google Scholar 

  • Martin RG, Gillette WK, Rosner JL (2000) Promoter discrimination by the related transcriptional activators MarA and SoxS: differential regulation by differential binding. Mol Microbiol 35:623–634

    Article  PubMed  CAS  Google Scholar 

  • McMurry LM, Levy SB (2010) Evidence that regulatory protein MarA of Escherichia coli represses rob by steric hindrance. J Bacteriol 192:3977–3982

    Article  PubMed  CAS  Google Scholar 

  • Michán C, Manchado M, Pueyo C (2002) SoxRS down-regulation of rob transcription. J Bacteriol 184:4733–4738

    Article  PubMed  Google Scholar 

  • Mokgatla RM, Gouws PA, Brözel VS (2002) Mechanisms contributing to hypochlorous acid resistance of a Salmonella isolate from a poultry-processing plant. J Appl Microbiol 92:566–573

    Article  PubMed  CAS  Google Scholar 

  • Newman EB, Lin R (1995) Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. Annu Rev Microbiol 49:747–775

    Article  PubMed  CAS  Google Scholar 

  • Nunoshiba T, Hidalgo E, Li Z, Demple B (1993) Negative autoregulation by the Escherichia coli SoxS protein: a dampening mechanism for the soxRS redox stress response. J Bacteriol 175:7492–7494

    PubMed  CAS  Google Scholar 

  • Peekhuis N, Tolner B, Poolman B, Kraemer R (1995) The glutamate uptake regulatory protein (Grp) of Zymomonas mobilis and its relation to the global regulator Lrp of Escherichia coli. J Bacteriol 177:5140–5147

    Google Scholar 

  • Perera IC, Lee YH, Wilkinson SP, Grove A (2009) Mechanism for attenuation of DNA binding by MarR family transcriptional regulators by small molecule ligands. J Mol Biol 390:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Pomposiello PJ, Bennik MH, Demple B (2001) Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183:3890–3902

    Article  PubMed  CAS  Google Scholar 

  • Rosen H, Crowley J, Heinecke J (2002) Human neutrophils use the myeloperoxidase–hydrogen peroxide–chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis. J Biol Chem 277:30463–30468

    Article  PubMed  CAS  Google Scholar 

  • Schneiders T, Levy SB (2006) MarA-mediated transcriptional repression of the rob promoter. J Biol Chem 281:10049–10055

    Article  PubMed  CAS  Google Scholar 

  • Semchyshyn H, Bagnyukova T, Lushchak V (2005) Involvement of soxRS regulon in response of Escherichia coli to oxidative stress induced by hydrogen peroxide. Biochemistry (Mosc) 70:1238–1244

    Article  CAS  Google Scholar 

  • Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194

    Article  PubMed  CAS  Google Scholar 

  • Thomas E (1979) Myeloperoxidase: hydrogen peroxide, chloride antimicrobial system—nitrogen–chlorine derivatives of bacterial components in bactericidal action against Escherichia coli. Infect Immun 23:522–531

    PubMed  CAS  Google Scholar 

  • Tobes R, Ramos JL (2002) AraC–XylS database: a family of positive transcriptional regulators in bacteria. Nucleic Acids Res 30:318–321

    Article  PubMed  CAS  Google Scholar 

  • Uzzau S, Figueroa-Bossi N, Rubino S, Bossi L (2001) Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci USA 98:15264–15269

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by grants FONDECYT # 1085131, # 1120384 and Universidad Andres Bello DI-34-11/R to CPS. BC and EHM work was supported by Doctoral fellowships granted by CONICYT. Additionally, BC and EHM work was supported by grants DI-19-12/I and DI-24-12/I, respectively, from Universidad Andres Bello.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Saavedra.

Additional information

Communicated by Jan Roelof van der Meer.

B. Collao and E. H. Morales contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collao, B., Morales, E.H., Gil, F. et al. Differential expression of the transcription factors MarA, Rob, and SoxS of Salmonella Typhimurium in response to sodium hypochlorite: down-regulation of rob by MarA and SoxS. Arch Microbiol 194, 933–942 (2012). https://doi.org/10.1007/s00203-012-0828-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0828-8

Keywords

Navigation