Skip to main content
Log in

Insights into the 1.59-Mbp largest plasmid of Azospirillum brasilense CBG497

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The plant growth-promoting proteobacterium Azospirillum brasilense enhances growth of many economically important crops, such as wheat, maize, and rice. The sequencing and annotation of the 1.59-Mbp replicon of A. brasilense CBG497, a strain isolated from a maize rhizosphere grown on an alkaline soil in the northeast of Mexico, revealed a GC content of 68.7 % and the presence of 1,430 potential protein-encoding genes, 1,147 of them classified into clusters of orthologous groups categories, and 16 tRNA genes representing 11 tRNA species. The presence of sixty-two genes representatives of the minimal gene set and chromid core genes suggests its importance in bacterial survival. The phaAB → G operon, reported as involved in the bacterial adaptation to alkaline pH in the presence of K+, was also found on this replicon and detected in several Azospirillum strains. Phylogenetic analysis suggests that it was laterally acquired. We were not able to show its inference on the adaptation to basic pH, giving a hint about the presence of an alternative system for adaptation to alkaline pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexeyev MF (1999) The pKnock series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–828

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (1983) Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 29:924–929

    Article  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Bi C, Benham CJ (2004) WebSIDD: server for predicting of the stress-induced duplex destabilized (SIDD) sites in superhelical DNA. Bioinformatics 20:1477–1479

    Article  PubMed  CAS  Google Scholar 

  • Bocs S, Cruveiller S, Vallenet D, Nuel G, Médigue C (2003) AMIGene: annotation of MIcrobial genes. Nucleic Acids Res 31:3723–3726

    Article  PubMed  CAS  Google Scholar 

  • Bozouklian H, Fogher C, Elmerich C (1986) Cloning and characterization of the glnA gene of Azospirillum brasilense Sp7. Ann Inst Pasteur Microbiol 137B:3–18

    Article  PubMed  CAS  Google Scholar 

  • Caballero-Mellado J, López-Reyes L, Bustillos-Cristales R (1999) Presence of 16S rRNA genes in multiple replicons in Azospirillum brasilense. FEMS Microbiol Lett 178:283–288

    Article  CAS  Google Scholar 

  • Chilton MD, Currier T, Farrand S, Bendich A, Gordon M, Nester E (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophague DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676

    Article  PubMed  CAS  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  PubMed  CAS  Google Scholar 

  • Croes C, Van Bastelaere E, DeClercq E, Eyers M, Vanderleyden J, Michiels K (1991) Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid 26:83–93

    Article  PubMed  CAS  Google Scholar 

  • DelVecchio VG, Kapatral V, Redkar RJ, Patra G, Mujer C, Los T, Ivanova N, Anderson I, Bhattacharyya A, Lykidis A, Reznik G, Jablonski L, Larsen N, D’Souza M, Bernal A, Mazur M, Goltsman E, Selkov E, Elzer PH, Hagius S, O’Callaghan D, Letesson JJ, Haselkorn R, Kyrpides N, Overbeek R (2002) The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA 99:443–448

    Article  PubMed  CAS  Google Scholar 

  • Egan ES, Fogel MA, Waldor MK (2005) Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 56:1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • García-Olivares J, Moreno-Medina V, Rodríguez-Luna I, Mendoza-Herrera A, Mayek-Pérez N (2007) Efecto de cepas de Azospirillum brasilense en el crecimiento y rendimiento de grano del maíz. Rev Fitotec Mex 30:305–310

    Google Scholar 

  • Gil R, Silva FJ, Peretó J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518–537

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez V, Bustos P, Ramirez-Romero MA, Medrano-Soto A, Salgado H, Hernandez-Gonzalez I, Hernandez-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, Rodríguez O, Flores M, Cevallos MA, Collado-Vides J, Romero D, Dávila G (2003) The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 4:R36

    Article  PubMed  Google Scholar 

  • Harrison PW, Lower RP, Kim NK, Young JP (2010) Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18(4):141–148

    Article  PubMed  CAS  Google Scholar 

  • Hauwaerts D, Alexandre G, Das SK, Vanderleyden J, Zhulin IB (2002) A major chemotaxis gene cluster in Azospirillum brasilense and relationships between chemotaxis operons in α-proteobacteria. FEMS Microbiol Lett 208:61–67

    PubMed  CAS  Google Scholar 

  • Hynes MF, McGregor NF (1990) Two plasmids other than the nodulation plasmid are necessary for the formation of nitrogen-fixing nodules in Rhizobium leguminosarum. Mol Microbiol 4:567–574

    Article  PubMed  CAS  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crtical Rev Microbiol 31:55–67

    Article  CAS  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  PubMed  CAS  Google Scholar 

  • Lerner A, Okon Y, Burdman S (2009) The wzm gene located in the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis. Microbiology 155:791–804

    Article  PubMed  CAS  Google Scholar 

  • Martin-Didonet CCG, Chubatsu LS, Souza EM, Kleina M, Rego FGM, Rigo LU, Yates MG, Pedrosa FO (2000) Genome structure of the genus Azospirillum. J Bacteriol 182:4113–4116

    Article  PubMed  CAS  Google Scholar 

  • Mavingui P, Flores M, Romero D, Martínez-Romero E, Palacios R (1997) Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA). Nat Biotechnol 15:564–569

    Article  PubMed  CAS  Google Scholar 

  • Mavingui P, Flores M, Guo X, Davila G, Perret X, Broughton WJ, Palacios R (2002) Dynamics of genome architecture in Rhizobium sp. strain NGR234. J Bacteriol 184:171–176

    Article  PubMed  CAS  Google Scholar 

  • Michiels K, De Troch P, Onyeocha I, Van Gool A, Elmerich C, Vanderleyden J (1989) Plasmid localization and mapping of two Azospirillum brasilense loci that affect exopolysaccharide synthesis. Plasmid 21:142–146

    Article  PubMed  CAS  Google Scholar 

  • Nelson LM, Knowles R (1978) Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can J Microbiol 24:1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Onyeocha I, Vieille C, Zimmer W, Baca BE, Flores M, Palacios R, Elmerich C (1990) Physical map and properties of a 90-MDa plasmid of Azospirillum brasilense Sp7. Plasmid 23:169–182

    Article  PubMed  CAS  Google Scholar 

  • Paddan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 30:67–88

    Google Scholar 

  • Pedrosa FO, Yates MG (1984) Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntr (gln) type gene products. FEMS Microbiol Lett 23:95–101

    Article  CAS  Google Scholar 

  • Pothier JF, Prigent-Combaret C, Haurat J, Moënne-Loccoz Y, Wisniewski-Dyé F (2008) Duplication of plasmid-borne nitrite reductase gene nirK in the wheat-associated plant growth-promoting rhizobacterium Azospirillum brasilense Sp245. Mol Plant Microbe Interact 21:831–842

    Article  PubMed  CAS  Google Scholar 

  • Putnoky P, Kereszt A, Nakamura T, Endre G, Grosskopf E, Kiss P, Kondorosi A (1998) The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol Microbiol 28:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sant’Anna FH, Almeida LGP, Cecagno R, Reolon LA, Siqueira FM, Machado MRS, Vasconcelos ATR, Schrank IS (2011) Genomic insights into the versatility of the plant growth-promoting bacterium Azospirillum amazonense. BMC Genomics 12:409–422

    Article  PubMed  Google Scholar 

  • Simon R, Priefer U, Pülher A (1983) A broad host range mobilization system for in vivo genetic engineering transposon mutagenesis in gramnegative bacteria. Bio/Technology 1:784–791

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Médigue C (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65

    Article  PubMed  CAS  Google Scholar 

  • Van Dommelen A, Van Bastelaere E, Keijers V, Vanderleyden J (1997) Genetics of Azospirillum brasilense with respect to ammonium transport, sugar uptake and chemotaxis. Plant Soil 194:155–160

    Article  Google Scholar 

  • Vanbleu E, Marchal K, Lambrecht M, Mathys J, Vanderleyden J (2004) Annotation of the pRhico plasmid of Azospirillum brasilense reveals its role in determining the outer surface composition. FEMS Microbiol Lett 232:165–172

    Article  PubMed  CAS  Google Scholar 

  • Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22:2196–2203

    Article  PubMed  CAS  Google Scholar 

  • Vial L, Lavire C, Mavingui P, Blaha D, Haurat J, Möenne-Loccoz Y, Bally R, Wisniewsky-Dyé F (2006) Phase variation and genome architecture changes in Azospirillum. J Bacteriol 188:5364–5373

    Article  PubMed  CAS  Google Scholar 

  • Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik K, Meinicke P, Merkl R (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinform 7:142

    Article  Google Scholar 

  • Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, Hayes-McDonald W, Robertson JS, Barbe V, Calteau A, Rouy Z, Mangenot S, Prigent-Combaret C, Normand P, Boyer M, Siguier P, Dessaux Y, Elmerich C, Condemine G, Krishnen G, Kennedy I, Paterson AH, González V, Mavingui P, Zhulin I (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430

    Article  PubMed  Google Scholar 

  • Yamaguchi T, Tsutsumi F, Putnoky P, Fukuhara M, Nakamura T (2009) pH-dependent regulation of the multi-subunit cation/proton antiporter Pha1 system from Sinorhizobium meliloti. Microbiology 155:2750–2756

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Erika Acosta-Cruz acknowledges support from CONACyT and SIP-IPN through Ph.D. fellowships. We also thank Alberto Mendoza and the CBG IPN for providing bacterial strains and facilities. This work was partially funded by projects 48044 from CONACyT to MV and the Centre National de la Recherche Scientifique to PM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Mavingui.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta-Cruz, E., Wisniewski-Dyé, F., Rouy, Z. et al. Insights into the 1.59-Mbp largest plasmid of Azospirillum brasilense CBG497. Arch Microbiol 194, 725–736 (2012). https://doi.org/10.1007/s00203-012-0805-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0805-2

Keywords

Navigation