Advertisement

Archives of Microbiology

, Volume 194, Issue 8, pp 719–724 | Cite as

Gallium(III), cobalt(III) and copper(II) protoporphyrin IX exhibit antimicrobial activity against Porphyromonas gingivalis by reducing planktonic and biofilm growth and invasion of host epithelial cells

  • Teresa OlczakEmail author
  • Dorota Maszczak-Seneczko
  • John W. Smalley
  • Mariusz Olczak
Short Communication

Abstract

Porphyromonas gingivalis acquires heme for growth, and initiation and progression of periodontal diseases. One of its heme acquisition systems consists of the HmuR and HmuY proteins. This study analyzed the antimicrobial activity of non-iron metalloporphyrins against P. gingivalis during planktonic growth, biofilm formation, epithelial cell adhesion and invasion, and employed hmuY, hmuR and hmuY-hmuR mutants to assess the involvement of HmuY and HmuR proteins in the acquisition of metalloporphyrins. Iron(III) mesoporphyrin IX (mesoheme) and iron(III) deuteroporphyrin IX (deuteroheme) supported planktonic growth of P. gingivalis cells, biofilm accumulation, as well as survival, adhesion and invasion of HeLa cells in a way analogous to protoheme. In contrast, cobalt(III), gallium(III) and copper(II) protoporphyrin IX exhibited antimicrobial activity against P. gingivalis, and thus represent potentially useful antibacterial compounds with which to target P. gingivalis. P. gingivalis hmuY, hmuR and hmuY-hmuR mutants showed decreased growth and infection of epithelial cells in the presence of all metalloporphyrins examined. In conclusion, the HmuY protein may not be directly involved in transport of free metalloporphyrins into the bacterial cell, but it may also play a protective role against metalloporphyrin toxicity by binding an excess of these compounds.

Keywords

Porphyromonas gingivalis HmuY Non-iron metalloporphyrins Heme Biofilm Epithelial cell invasion 

Notes

Acknowledgments

This work was supported in part by grants nos. N401 029 32/0742 and N N303 518438 from the Department of Scientific Research, Ministry of Science and Higher Education and by Wroclaw Research Center EIT + under the project “Biotechnologies and advanced medical technologies—BioMed” (POIG 01.01.02-02-003/08/00) financed from the European Regional Development Fund (Operational Program Innovative Economy, 1.1.2) (TO). Part of the data was presented at 88th IADR General Session, Barcelona, Spain, 14–17 July 2010.

References

  1. Bozja J, Yi K, Shafer WM, Stojiljkovic I (2004) Porphyrin-based compounds exert antibacterial action against the sexually transmitted pathogens Neisseria gonorrhoeae and Haemophilus ducreyi. Int J Antimicrob Agents 24:578–584PubMedCrossRefGoogle Scholar
  2. Bramanti TE, Holt SC (1991) Roles of porphyrins and host iron transport proteins in regulation of growth of Porphyromonas gingivalis W50. J Bacteriol 173:7330–7339PubMedGoogle Scholar
  3. Craig RG, Yip YK, So MK, Boylan RJ, Socransky SS, Haffajee AD (2003) Relationship of destructive periodontal disease to the acute-phase response. J Periodontol 74:1007–1016PubMedCrossRefGoogle Scholar
  4. Curtis MA, Griffiths GS, Price SJ, Coulthurst SK, Johnson NW (1988) Detection of high-risk groups and individuals for periodontal diseases. Clinical assessment of the periodontium. J Clin Periodontol 15:628–632PubMedCrossRefGoogle Scholar
  5. Fuller MD, Caldwell DR (1982) Tetrapyrrole utilization by Bacteroides fragilis. Can J Microbiol 28:1304–1310PubMedCrossRefGoogle Scholar
  6. Gao JL, Nguyen KA, Hunter N (2010) Characterization of a hemophore-like protein from Porphyromonas gingivalis. J Biol Chem 285:40028–40038PubMedCrossRefGoogle Scholar
  7. Graves DT, Jiang Y, Genco CA (2000) Periodontal disease: bacterial virulence factors, host response and impact on systemic health. Curr Opin Infect Dis 13:227–232PubMedCrossRefGoogle Scholar
  8. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804PubMedCrossRefGoogle Scholar
  9. Kuboniwa M, Hendrickson EL, Xia Q, Wang T, Xie H, Hackett M, Lamont RJ (2009) Proteomics of Porphyromonas gingivalis within a model oral microbial community. BMC Microbiol 9:98PubMedCrossRefGoogle Scholar
  10. Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, Weinberg A (1995) Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 63:3878–3885PubMedGoogle Scholar
  11. Leon R, Silva N, Ovalle A, Chaparro A, Ahumada A, Gajardo M, Martinez M, Gamonal J (2007) Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. J Periodontol 78:1249–1255PubMedCrossRefGoogle Scholar
  12. Marsh PD (2004) Dental plaque as a microbial biofilm. Caries Res 38:204–211PubMedCrossRefGoogle Scholar
  13. McCall DR, Caldwell DR (1977) Tetrapyrrole utilization by Bacteroides ruminicola. J Bacteriol 131:809–814PubMedGoogle Scholar
  14. Meurman JH, Sanz M, Janket SJ (2004) Oral health, atherosclerosis, and cardiovascular disease. Crit Rev Oral Biol Med 15:403–413PubMedCrossRefGoogle Scholar
  15. Nakagawa I, Inaba H, Yamamura T, Kato T, Kawai S, Ooshima T, Amano A (2006) Invasion of epithelial cells and proteolysis of cellular focal adhesion components by distinct types of Porphyromonas gingivalis fimbriae. Infect Immun 74:3773–3782PubMedCrossRefGoogle Scholar
  16. Olczak T, Dixon DW, Genco CA (2001) Binding specificity of the Porphyromonas gingivalis heme and hemoglobin receptor HmuR, gingipain K, and gingipain R1 for heme, porphyrins, and metalloporphyrins. J Bacteriol 183:5599–5608PubMedCrossRefGoogle Scholar
  17. Olczak T, Simpson W, Liu X, Genco CA (2005) Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 29:119–144PubMedCrossRefGoogle Scholar
  18. Olczak T, Sroka A, Potempa J, Olczak M (2008) Porphyromonas gingivalis HmuY and HmuR—further characterization of a novel mechanism of heme utilization. Arch Microbiol 183:197–210CrossRefGoogle Scholar
  19. Olczak T, Wojtowicz H, Ciuraszkiewicz J, Olczak M (2010) Species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY. BMC Microbiol 10:134PubMedCrossRefGoogle Scholar
  20. Paramaesvaran M, Nguyen KA, Caldon E, McDonald JA, Najdi S, Gonzaga G, Langley DB, DeCarlo A, Crossley MJ, Hunter N, Collyer CA (2003) Porphyrin-mediated cell surface heme capture from hemoglobin by Porphyromonas gingivalis. J Bacteriol 185:2528–2537PubMedCrossRefGoogle Scholar
  21. Rosenstein ED, Greenwald RA, Kushner LJ, Weissmann G (2004) Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. Inflammation 28:311–318PubMedCrossRefGoogle Scholar
  22. Roth GA, Ankersmit HJ, Brown VB, Papapanou PN, Schmidt AM, Lalla E (2007) Porphyromonas gingivalis infection and cell death in human aortic endothelial cells. FEMS Microbiol Lett 272:106–113PubMedCrossRefGoogle Scholar
  23. Smalley JW, Birss AJ, Silver J (2000) The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the μ-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol Lett 183:159–164PubMedGoogle Scholar
  24. Smalley JW, Silver J, Birss AJ, Withnall R, Titler PJ (2003) The heam pigment of the oral anaerobes Prevotella nigrescens and Prevotella intermedia is composed of iron(III) protoporphyrin IX in the monomeric form. Microbiology 149:1711–1718PubMedCrossRefGoogle Scholar
  25. Smalley JW, Byrne DP, Birss AJ, Wojtowicz H, Sroka A, Potempa J, Olczak T (2011) HmuY haemophore and gingipain proteases constitute a unique syntrophic system of haem acquisition by Porphyromonas gingivalis. PLoS ONE 6(2):e17182PubMedCrossRefGoogle Scholar
  26. Stojiljkovic I, Kumar V, Srinivasan N (1999) Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol Microbiol 31:429–442PubMedCrossRefGoogle Scholar
  27. Wojaczynski J, Wojtowicz H, Bielecki M, Olczak M, Smalley JW, Latos-Grazynski L, Olczak T (2011) Iron(III) mesoporphyrin IX and iron(III) deuteroporphyrin IX bind to the Porphyromonas gingivalis HmuY hemophore. Biochem Biophys Res Commun 411:299–304PubMedCrossRefGoogle Scholar
  28. Wojtowicz H, Guevara T, Tallant C, Olczak M, Sroka A, Potempa J, Sola M, Olczak T, Gomis-Ruth FX (2009a) Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis. PLoS Pathog 5(5):e100041CrossRefGoogle Scholar
  29. Wojtowicz H, Wojaczynski J, Olczak M, Kroliczewski J, Latos-Grazynski L, Olczak T (2009b) Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis. Biochem Biophys Res Commun 383:178–182PubMedCrossRefGoogle Scholar
  30. Yilmaz O, Verbeke P, Lamont RJ, Ojcius DM (2006) Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells. Infect Immun 74:703–710PubMedCrossRefGoogle Scholar
  31. Yukitake H, Naito M, Sato K, Shoji M, Ohara N, Yoshimura M, Sakai E, Nakayama K (2011) Effects of non-iron metalloporphyrins on growth and gene expression of Porphyromonas gingivalis. Microbiol Immunol 55:141–153PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Teresa Olczak
    • 1
    Email author
  • Dorota Maszczak-Seneczko
    • 1
  • John W. Smalley
    • 2
  • Mariusz Olczak
    • 1
  1. 1.Laboratory of Biochemistry, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
  2. 2.Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK

Personalised recommendations