Skip to main content
Log in

A new class of adenylate kinase in methanogens is related to uridylate kinase

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The protein derived from the Methanocaldococcus jannaschii MJ0458 gene is annotated as a δ-1-pyrroline 5-carboxylate synthetase and is predicted to be related to aspartokinase and uridylate kinase. Analysis of the predicted protein sequence indicated that it is a unique kinase with few similarities to either uridylate or adenylate kinase. Here, we report that the MJ0458 gene product is a second type of archaeal adenylate kinase, AdkB. This enzyme is different from the established archaeal-specific adenylate kinase in both sequence and predicted tertiary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Cheek S, Zhang H, Grishin NV (2002) Sequence and structure classification of kinases. J Mol Biol 320:855–881

    Article  PubMed  CAS  Google Scholar 

  • Cheek S, Ginalski K, Zhang H, Grishin NV (2005) A comprehensive update of the sequence and structure classification of kinases. BMC Struct Biol 5:6

    Article  PubMed  Google Scholar 

  • Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281:99–102

    Article  PubMed  CAS  Google Scholar 

  • Counago R, Wilson CJ, Pena MI, Wittung-Stafshede P, Shamoo Y (2008) An adaptive mutation in adenylate kinase that increases organismal fitness is linked to stability-activity trade-offs. Protein Eng Des Sel 21:19–27. doi:10.1093/protein/gzm072

    Article  PubMed  CAS  Google Scholar 

  • Criswell AR, Bae E, Stec B, Konisky J, Phillips GN Jr (2003) Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. J Mol Biol 330:1087–1099. doi:S0022283603006557

    Article  PubMed  CAS  Google Scholar 

  • Davlieva M, Shamoo Y (2009) Structure and biochemical characterization of an adenylate kinase originating from the psychrophilic organism Marinibacillus marinus. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:751–756. doi:10.1107/S1744309109024348

    Article  PubMed  Google Scholar 

  • Davlieva M, Shamoo Y (2010) Crystal structure of a trimeric archaeal adenylate kinase from the mesophile Methanococcus maripaludis with an unusually broad functional range and thermal stability. Proteins 78:357–364. doi:10.1002/prot.22549

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferber DM, Haney PJ, Berk H, Lynn D, Konisky J (1997) The adenylate kinase genes of M. voltae, M. thermolithotrophicus, M. jannaschii, and M. igneus define a new family of adenylate kinases. Gene 185:239–244. doi:S0378-1119(96)00651-8

    Article  PubMed  CAS  Google Scholar 

  • Giometti CS et al (2002) Global analysis of a “simple” proteome: Methanococcus jannaschii. J Chromatogr B Analyt Technol Biomed Life Sci 782:227–243. doi:S1570023202005688

    Article  PubMed  CAS  Google Scholar 

  • Gorris LG, Voet AC, van der Drift C (1991) Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus. Biofactors 3:29–35

    PubMed  CAS  Google Scholar 

  • Graupner M, White RH (2001) Methanococcus jannaschii generates l-proline by cyclization of l-ornithine. J Bacteriol 183:5203–5205

    Article  PubMed  CAS  Google Scholar 

  • Grochowski LL, White RH (2010) Biosynthesis of the methanogenic coenzymes. In: Begley T (ed) Comprehensive natural products chemistry II. Elsevier, Amsterdam, pp 711–748

    Chapter  Google Scholar 

  • Grochowski LL, Xu H, White RH (2006) Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 188:3192–3198. doi:10.1128/JB.188.9.3192-3198.2006

    Article  PubMed  CAS  Google Scholar 

  • Howell DM, Graupner M, Xu H, White RH (2000) Identification of enzymes homologous to isocitrate dehydrogenase that are involved in coenzyme B and leucine biosynthesis in methanoarchaea. J Bacteriol 182:5013–5016

    Article  PubMed  CAS  Google Scholar 

  • Jensen KS, Johansson E, Jensen KF (2007) Structural and enzymatic investigation of the Sulfolobus solfataricus uridylate kinase shows competitive UTP inhibition and the lack of GTP stimulation. Biochemistry 46:2745–2757. doi:10.1021/bi0618159

    Article  PubMed  CAS  Google Scholar 

  • Kath T, Schafer G (1995) A secY homologous gene in the crenarchaeon Sulfolobus acidocaldarius. Biochim Biophys Acta 1264:155–158

    PubMed  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306. doi:10.1093/bib/bbn017

    Article  PubMed  CAS  Google Scholar 

  • Lacher K, Schafer G (1993) Archaebacterial adenylate kinase from the thermoacidophile Sulfolobus acidocaldarius: purification, characterization, and partial sequence. Arch Biochem Biophys 302:391–397. doi:10.1006/abbi.1993.1229

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Chien-Liang L, Tsai JY, Sue WT, Hsia WS, Huang H (2010) Identification and biochemical characterization of a unique Mn2+-dependent UMP kinase from Helicobacter pylori. Arch Microbiol 192:739–746. doi:10.1007/s00203-010-0600-x

    Article  PubMed  CAS  Google Scholar 

  • Lobley A, Sadowski MI, Jones DT (2009) pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 25:1761–1767. doi:10.1093/bioinformatics/btp302

    Article  PubMed  CAS  Google Scholar 

  • Marco-Marin C, Escamilla-Honrubia JM, Rubio V (2005a) First-time crystallization and preliminary X-ray crystallographic analysis of a bacterial-archaeal type UMP kinase, a key enzyme in microbial pyrimidine biosynthesis. Biochim Biophys Acta 1747:271–275. doi:10.1016/j.bbapap.2004.11.010

    PubMed  CAS  Google Scholar 

  • Marco-Marin C, Gil-Ortiz F, Rubio V (2005b) The crystal structure of Pyrococcus furiosus UMP kinase provides insight into catalysis and regulation in microbial pyrimidine nucleotide biosynthesis. J Mol Biol 352:438–454. doi:10.1016/j.jmb.2005.07.045

    Article  PubMed  CAS  Google Scholar 

  • Mashhadi Z, Xu H, Grochowski LL, White RH (2010) Archaeal RibL: a new FAD synthetase that is air sensitive. Biochemistry 49:8748–8755. doi:10.1021/bi100817q

    Article  PubMed  CAS  Google Scholar 

  • Meier C et al (2008) The crystal structure of UMP kinase from Bacillus anthracis (BA1797) reveals an allosteric nucleotide-binding site. J Mol Biol 381:1098–1105. doi:10.1016/j.jmb.2008.06.078

    Article  PubMed  CAS  Google Scholar 

  • Rusnak P, Haney P, Konisky J (1995) The adenylate kinases from a mesophilic and three thermophilic methanogenic members of the Archaea. J Bacteriol 177:2977–2981

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Scheer M et al (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:D670–D676. doi:10.1093/nar/gkq1089

    Article  PubMed  Google Scholar 

  • Sheng XR, Li X, Pan XM (1999) An iso-random Bi Bi mechanism for adenylate kinase. J Biol Chem 274:22238–22242

    Article  PubMed  CAS  Google Scholar 

  • Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem 222:9–19

    Article  PubMed  CAS  Google Scholar 

  • White RH (1993) Structures of the modified folates in the thermophilic archaebacteria Pyrococcus furiosus. Biochemistry 32:745–753

    Article  PubMed  CAS  Google Scholar 

  • White RH (2006) The difficult road from sequence to function. J Bacteriol 188:3431–3432. doi:10.1128/JB.188.10.3431-3432.2006

    Article  PubMed  CAS  Google Scholar 

  • Xia Q, Wang T, Hendrickson EL, Lie TJ, Hackett M, Leigh JA (2009) Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis. BMC Microbiol 9:149. doi:10.1186/1471-2180-9-149

    Article  PubMed  Google Scholar 

  • Zhu W, Reich CI, Olsen GJ, Giometti CS, Yates JR 3rd (2004) Shotgun proteomics of Methanococcus jannaschii and insights into methanogenesis. J Proteome Res 3:538–548

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Note added in proof

We have recently identified the enzyme catalyzing the formation of dihydro-6-hydroxymethylpterin-PP and AMP from ATP and dihydro-6-hydroxymethylpterin that is involved in the biosynthesis of methanopterin. We propose that AdkB is involved in converting the AMP product of this reaction to ATP.

Acknowledgments

This research was supported by the U.S. National Science Foundation Grant MCB 0722787 to R.H.W. We thank Walter Niehaus for assistance with editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. White.

Additional information

Communicated by Harald Huber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grochowski, L.L., Censky, K., Xu, H. et al. A new class of adenylate kinase in methanogens is related to uridylate kinase. Arch Microbiol 194, 141–145 (2012). https://doi.org/10.1007/s00203-011-0759-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0759-9

Keywords

Navigation