Skip to main content
Log in

What is an autotroph?

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The concept of autotrophy depends on the growth media for pure cultures supplying a single one carbon source for anabolism. Secondary carbon compounds added to the medium as chelators and/or vitamins confuse the meaning. This note suggests a clarification of definition suitable for contemporary biochemical studies of true autotrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aguiar P, Beveridge TJ, Reysenbach AL (2004) Sulfurihydrogenibium azorense sp. nov. a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54:33–39

    Article  PubMed  CAS  Google Scholar 

  • Alain K, Callac N, Guégan MF, Lesongeur P, Crassous MA, Cambon-Bonavita MA, Querellou J, Prieur D (2009) Nautilia abyssi sp. nov., a thermophilic chemolithoautotrophic sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 59:1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Allen MB (1959) Studies with Cyanidium caldarium an anomalously pigmented chlorophyte. Arch Microbiol 32:270–277

    Article  CAS  Google Scholar 

  • Balashova VV, Vedenina IY, Markosyan GE, Zavarzin GA (1974) The autotrophic growth of Leptospirillum ferrooxidans. Microbiology (Engl Transl of Mikrobiologiia) 43:581–585

    CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  Google Scholar 

  • Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP (2006) The genome sequence of the obligately chemolithoautotrophic facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488

    Article  PubMed  CAS  Google Scholar 

  • Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii gen. sp. Nov. represents a novel group of archaea extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21

    Article  PubMed  Google Scholar 

  • Burggraf S, Fricke H, Neuner A, Kristjansson J, Rouvier P, Mandelco L, Woese CR, Stetter KO (1990) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. System Appl Microbiol 13:263–269

    CAS  Google Scholar 

  • Burggraf S, Olsen GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15:352–356

    PubMed  CAS  Google Scholar 

  • Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004a) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004b) Methylocella palustris gen. nov. sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    Article  Google Scholar 

  • Dobrinski KP, Longo DL, Scott KM (2005) The carbon-concentrating mechanism of the hydrothermal vent chemolithoautotroph Thiomicrospira crunogena. J Bacteriol 187:5761–5766

    Article  PubMed  CAS  Google Scholar 

  • Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales description of Thermocrinis albus sp. nov. Extremophiles 6:309–318

    Article  PubMed  Google Scholar 

  • Ehrlich HL (1978) Inorganic energy sources for chemolithotrophic and mixotrophic bacteria. Geomicrobiol J 1:65–83

    Article  CAS  Google Scholar 

  • Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513

    Article  PubMed  CAS  Google Scholar 

  • Geelhoed JS, Kleerebezem R, Sorokin DYO, Stams AJ, van Loosdrecht MC (2010) Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetospirillum strain J10 and Magnetospirillum gryphiswaldense. Environ Microbiol 12:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Gotz D, Banta A, Beveridge TJ, Rushdi AI, Simoneit BRT, Reysenbach A-L (2002) Persephonella marina gen nov sp nov and Persephonella guaymasensis sp. nov., two novel thermophilic hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Hafenbradl D, Keller M, Dirmeier R, Rachel R, Rossnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov. sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 199:308–314

    Article  Google Scholar 

  • Henstra AM, Stams AJM (2004) Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70:7236–7240

    Article  PubMed  CAS  Google Scholar 

  • Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov. sp. nov., a moderately halophilic methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826

    Article  PubMed  CAS  Google Scholar 

  • House CH, Fitz-Gibbon ST (2002) Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J Mol Evol 54:539–547

    Article  PubMed  CAS  Google Scholar 

  • Huber G, Stetter KO (1991) Sulfolobus metallicus sp nov, a novel strictly chemolithoautotrophic, thermophilic, archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378

    CAS  Google Scholar 

  • Huber R, Stetter KO (2001) Genus Aquifex. In: Garrity G (ed) Bergey’s manual of systematic bacteriology, vol 1, the archaea, cyanobacteria, phototrophs and deeply branching genera. Springer, New York, pp 360–362

    Google Scholar 

  • Huber H, Stetter KO (2006) Desulfurococcales, chap. 4. In: Dworkin M et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, vol 3. Springer, New York, pp 52–68

  • Huber H, Thomm M, König H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50

    Article  Google Scholar 

  • Huber G, Spinnler C, Gambocorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov., represents a new genus of aerobic metal-mobilizing thermoacidophilic Archaebacteria. System Appl Microbiol 12:38–47

    Article  Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. System Appl Microbiol 15:340–351

    Google Scholar 

  • Huber R, Rossnagel P, Woese CR, Rachel R, Langworthy TA, Stetter KO (1996) Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gengen. nov. sp. nov. Syst Appl Microbiol 19:40–49

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Jannasch H, Rachel R, Fuchs T, Stetter KO (1997) Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer isolated from abyssal black smokers. System Appl Microbiol 20:374–380

    Article  CAS  Google Scholar 

  • Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov. sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583

    PubMed  CAS  Google Scholar 

  • Huber H, Diller S, Horn C, Rachel R (2002) Thermovibrio ruber gen. nov. sp. nov., a novel extremely thermophilic chemolithoautotrophic deeply branching bacterial nitrate-reducer. Int J System Evol Microbiol 52:1859–1865

    Article  CAS  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen O, Birkel NK (2008) Methane oxidation at 55°C, pH 2, by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Sugita K, Yumoto I, Nodasaka Y, Okabe S (2005) Thiovirga sulfuroxydans gen. nov. sp. nov. a chemolithoautotrophic sulfur-oxidizing bacterium isolated from a microaerobic waste- water biofilm. Int J Syst Evol Microbiol 55:1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  CAS  Google Scholar 

  • Jordan SL, McDonald IR, Kraczkiewicz-Dowjat AJ, Kelly DP, Rainey FA, Murrell JC, Wood AP (1997) Autotrophic growth on carbon disulfide is a property of novel strains of Paracoccus denitrificans. Arch Microbiol 168:225–236

    Article  PubMed  CAS  Google Scholar 

  • Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1984) Hydrogenobacter thermophilus gen. nov. sp. nov., an extremely thermophilic aerobic hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34:5–10

    Article  CAS  Google Scholar 

  • Kelly DP (1971) Autotrophy-concepts of lithotrophic bacteria their organic metabolism. Annu Rev Microbiol 25:177–210

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP, Wood AP (2002) The chemolithotrophic prokaryotes. In: Dworkin M (ed) The prokaryotes, vol 2. Springer, New York, pp 441–456

    Google Scholar 

  • Kendall MM, Liu Y, Sieprawska-Lupa M, Stetter KO, Whitman WB, Boone DR (2006) Methanococcus aeolicus sp. nov., a mesophilic methanogenic archaeon from shallow deep marine sediments. Int J Syst Evol Microbiol 56:1525–1529

    Article  PubMed  CAS  Google Scholar 

  • King GM (2007) Chemolithotrophic bacteria: distributions functions significance in volcanic environments. Microbes Environ 22:309–319

    Article  Google Scholar 

  • König H, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius sp. nov., a coccoid methanogen growing only on methanol methylamines. Zbl Bakt Hyg I Abt Orig C3:478–490

    Google Scholar 

  • Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov., represents a novel group of hyperthermophilic methanogens growing at 110°C. Arch Microbiol 156:239–247

    Article  CAS  Google Scholar 

  • Lepo JE, Hanus FJ, Evans HJ (1980) Chemoautotrophic growth of hydrogen-uptake-positive strains of Rhizobium japonicam. J Bacteriol 141:664–670

    PubMed  CAS  Google Scholar 

  • L’Haridon S, Cilia V, Messner P, Raguénès G, Gambacorta A, Sleytr UB, Prieur D, Jeanthon C (1998) Desulfurobacterium thermolithotrophum gen. nov., sp. nov. a novel autotrophic sulfur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711

    Article  PubMed  Google Scholar 

  • L’Haridon S, Reysenbach AL, Tindall BJ, Schonheit P, Banta A, Johnsen U, Schumann P, Gambacorta A, Stackebrandt E, Jeanthon C (2006) Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. Int J Syst Evol Microbiol 56:2843–2852

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, L’Haridon S, Schumann P, Spring S, Bonch-Osmolovskaya EA, Jeanthon C, Stackebrandt E (2004) Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov., within the class ‘Epsilon proteobacteria’ isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54:41–45

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Suzuki K (2008) Thiofaba tepidiphila gen. nov., sp. nov., a novel obligately chemolithoautotrophic sulfur-oxidizing bacterium of the Gammaproteo-bacteria isolated from a hot spring. Int J Syst Evol Microbiol 58:1885–1891

    Article  PubMed  CAS  Google Scholar 

  • Morowitz HJ, Srinivasan V, Smith E (2010) Ligand field theory the origin of life as an emergent feature of the periodic table of elements. Biol Bull 219:1–6

    PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity biochemistry ecological significance. FEMS Microbiol Ecol 65:1–14

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K, Horikoshi K, Sako Y (2003) Persephonella hydrogeniphila sp. nov., a novel thermophilic hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869

    Article  PubMed  CAS  Google Scholar 

  • Nishihara H, Igarashi Y, Kodama T (1991) Hydrogenovibrio marinus gen. nov., sp. nov., a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium. Int J Syst Bacteriol 41:130–133

    Article  Google Scholar 

  • Nunoura T, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2008) Hydrogenivirga okinawensis sp. nov., a thermophilic sulfur-oxidizing chemolithoautotroph isolated from a deep-sea hydrothermal field Southern Okinawa Trough. Int J Syst Evol Microbiol 58:676–681

    Article  PubMed  CAS  Google Scholar 

  • Padden AN, Kelly DP, Wood AP (1998) Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch Microbiol 169:249–256

    Article  PubMed  CAS  Google Scholar 

  • Paper W, Jahn U, Hohn MJ, Kronner M, Näther DJ, Burghardt T, Rachel R, Stetter KO, Huber H (2008) Ignicoccus hospitalis sp. nov., the host of Nanoarchaeum equitans. Int J Syst Evol Microbiol 57:803–808

    Article  CAS  Google Scholar 

  • Payne JW, Bolton H Jr, Campbell JA, Xun L (1988) Purification and characterization of EDTA monooxygenase from the EDTA-degrading bacterium BNC1. J Bacteriol 180:3823–3827

    Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das vitamin B-12-Bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55:245–256

    Article  CAS  Google Scholar 

  • Pitulle C, Yang Y, Marchiani M, Moore ERB, Siefert JL, Aragno M, Jurtshuk P Jr, Fox GE (1994) Phylogenetic position of the genus Hydrogenobacter. Int J Syst Bacteriol 44:620–626

    Article  PubMed  CAS  Google Scholar 

  • Pronk JT, Meijer WM, Hazeu W, van Dijken JP, Bos P, Kuenen JG (1991) Growth of Thiobacillus ferrooxidans on formic acid. Appl Environ Microbiol 57:2057–2062

    PubMed  CAS  Google Scholar 

  • Rahalkar M, Bussmann I, Schink B (2007) Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int J Syst Evol Microbiol 57:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Sattley WM, Madigan MT (2006) Isolation, characterization and ecology of cold-active chemolithotrophic sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell Antarctica. Appl Environ Microbiol 72:5562–5568

    Article  PubMed  CAS  Google Scholar 

  • Sattley WM, Madigan MT (2007) Cold-active acetogenic bacteria from surficial sediments of perennially ice-covered Lake Fryxell Antarctica. FEMS Microbiol Lett 272:48–54

    Article  PubMed  CAS  Google Scholar 

  • Silverman MP, Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans I: an improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77:642–647

    PubMed  CAS  Google Scholar 

  • Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, Karpov GA, Bonch-Osmolovskaya EA (2006) Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 56:797–800

    Article  PubMed  CAS  Google Scholar 

  • Slobodkina GB, Kolganova TV, Chernyh NA, Querellou J, Bonch-Osmolovskaya EA, Slobodkin AI (2009) Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 59:1508–1512

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Hoare DS (1968) Acetate assimilation by Nitrobacter agilis in relation to its “obligate autotrophy”. J Bacteriol 95:844–855

    PubMed  CAS  Google Scholar 

  • Smith NA, Kelly DP (1988) Oxidation of carbon disulphide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m. J Gen Microbiol 134:3041–3048

    CAS  Google Scholar 

  • Smith E, Morowitz HJ, Srinivasan V (2006) Experimental search for minimal organisms and the last universal common ancestor: reconstructing the Ur-Organism. Complexity 12:11–12

    Article  Google Scholar 

  • Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Tourova TP, Kato C, Bonch Osmolovskaya EA, Robb FT (2001a) Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic thermophilic CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149

    PubMed  CAS  Google Scholar 

  • Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Tourova TP, Kato C, Bonch Osmolovskaya EA, Robb FT (2001b) Carboxydocella thermautotrophica gen nov sp nov a novel anaerobic CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967

    Article  CAS  Google Scholar 

  • Sokolova T, Hanel J, Onyenwoke RU, Reysenbach AL, Banta A, Geyer R, Gonza JM, Whitman WB, Wiegel J (2007) Novel chemolithotrophic thermophilic anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov., Thermolithobacter carboxydivorans sp. nov. Extremophiles 11:145–157

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG (2004) Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov., with thiocyanate. Microbiology (Reading) 150:2435–2442

    Article  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Kolganova TV, Spiridonova EM, Berg IA, Muyzer G (2006) Thiohalomonas denitrificans gen. nov., sp. nov., Thiohalomonas nitratireducens sp. nov., novel, obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying Gamma-proteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 57:1582–1589

    Article  Google Scholar 

  • Sorokin DY, Tourova TP, Galinski EA, Muyzer G, Kuenen JG (2008) Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic sulfur-oxidizing deep-lineage gamma proteobacterium from hypersaline habitats. Int J Syst Evol Microbiol 58:2890–2897

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan V, Morowitz HJ (2009a) The canonical network of autotrophic intermediary metabolism: minimal metabolome of a reductive chemoautotroph. Biol Bull 216:126–130

    PubMed  CAS  Google Scholar 

  • Srinivasan V, Morowitz HJ (2009b) Analysis of the intermediary metabolism of a reductive chemoautotroph. Biol Bull 217:222–232

    PubMed  CAS  Google Scholar 

  • Starkey RL (1961) Symposium on autotrophy annual meeting of the American society for microbiology, Chicago, Illinois. Bacteriol Rev 26:Pt1–Pt2

    Google Scholar 

  • Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Janecovic D, König H, Palm P, Wunderl S (1981) Methanothermus fervidus sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl Bakt Hyg I Abt Orig C2:166–178

    Google Scholar 

  • Stoehr R, Waberski A, Volker H, Tindall BJ, Thomm M (2001) Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51:1853–1862

    Article  Google Scholar 

  • Takai K, Lnoue A, Horikoshi K (1999) Thermaerobacter marianensis gen. nov. sp, nov., an aerobic extremely thermophilic marine bacterium from the 11000 m deep Mariana Trench. Int J Syst Evol Microbiol 49:619–623

    CAS  Google Scholar 

  • Takai K, Inoue A, Horikoshi K (2002) Methanothermococcus okinawensis sp. nov., a thermophilic methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Nakagawa S, Sako Y, Horikoshi K (2003) Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic strictly anaerobic hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53:1947–1954

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K (2005) Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic acidophilic hydrogen-oxidizing chemolithoautotroph within epsilon-proteobacteria isolated from a deep-sea hydrothermal fumaroles in the Mariana Arc. Int J Syst Evol Microbiol 55:183–189

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F, Horikoshi K (2006) Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and amended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 56:1725–1733

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A (2009) Isolation and physiological characterization of two novel piezophilic thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol 11:1983–1997

    Article  PubMed  Google Scholar 

  • Temple KL, Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J Bacteriol 62:605–611

    PubMed  CAS  Google Scholar 

  • Trefil J, Morowitz HJ, Smith E (2009) The origin of life. Am Sci 97:206–213

    Article  Google Scholar 

  • Tsubota J, Eshinimaev BT, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. J Syst Evol Microbiol 55:1877–1884

    Article  CAS  Google Scholar 

  • Vetriani C, Speck MD, Ellor SV, Lutz RA, Starovoytov V (2004) Thermovibrio ammonificans sp. nov., a thermophilic chemolithotrophic nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–178

    Article  PubMed  CAS  Google Scholar 

  • Visser JM, Stefess GC, Robertson LA, Kuenen JG (1997) Thiobacillus sp. W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for the aerobic treatment of sulfidic wastes. Antonie van Leeuwenhoek 72:127–134

    Article  PubMed  CAS  Google Scholar 

  • Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926

    PubMed  Google Scholar 

  • Voordeckers JW, Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779

    Article  PubMed  CAS  Google Scholar 

  • Waksman SA, Joffe IS (1922) Microorganisms concerned in the oxidation of sulfur in the soil: II. Thiobacillus thiooxidans, a new sulfur oxidizing organism isolated from the soil. J Bacteriol 7:239–256

    PubMed  CAS  Google Scholar 

  • Widdel F, Bak F (1992) Gram negative mesophilic sulfate reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification and applications, vol 2, 2nd edn. Springer, New York, pp 3352–3378

    Google Scholar 

  • Winogradsky S (1887) Ueber Schwefelbakterien. Botan Zeitung 45:489–526

    Google Scholar 

  • Winogradsky S (1890) Recherches sur les organismes de la nitrification. Ann Inst Pasteur 4:257–275

    Google Scholar 

  • Winogradsky S (1922) Eisenbakterien als Anorgoxydanten. Centralbl Bakteriol Parasitenk Abt 2 57:1–21

    CAS  Google Scholar 

  • Witschel M, Nagel S, Egli T (1997) Identification characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. J Bacteriol 179:6937–6943

    PubMed  CAS  Google Scholar 

  • Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28:335–352

    Article  PubMed  CAS  Google Scholar 

  • Xun L, Reeder RB, Plymale AE, Girvin DC, Bolton H Jr (1996) Degradation of metal-nitrilotriacetate (NTA) complexes by NTA monooxygenase. Environ Sci Technol 30:1753–1755

    Article  Google Scholar 

  • Yuan Z, Van Briesen JM (2008) Bacterial growth on EDTA, NTA their biodegradation intermediates. Biodegradation 19:41–52

    Article  PubMed  CAS  Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. nov., an anaerobic autotrophic extreme thermophile. J Bacteriol 109:707–713

    PubMed  CAS  Google Scholar 

  • Zhang H, Herman JP, Bolton H Jr, Zhang Z, Clark S, Xun L (2007) Evidence indicating that a bacterial ABC-type transporter imports free EDTA for metabolism. J Bacteriol 189:7991–7997

    Article  PubMed  CAS  Google Scholar 

  • Zillig W, Yeats S, Holz I, Bock A, Gropp F, Rettenberger M, Lutz S (1985) Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature (London) 313:789–791

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the National Science Foundation (FIBRE Grant) and William Melton for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayasarathy Srinivasan.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, V., Morowitz, H.J. & Huber, H. What is an autotroph?. Arch Microbiol 194, 135–140 (2012). https://doi.org/10.1007/s00203-011-0755-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0755-0

Keywords

Navigation