Skip to main content
Log in

Comparative in silico analysis of chemotaxis system of Campylobacter fetus

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chemoreceptor and chemotaxis signal transduction cascade genes of C. fetus subsp. fetus 82-40 show high level of similarity to that in C. jejuni and appears to include sixteen diverse transducer-like protein (tlp) genes that appear similar to nine of the twelve tlp genes in the C. jejuni NCTC 11168 with a percent identity ranging from 15 to 50%. Sixteen putative C. fetus 82-40 tlp genes belong to three classes: A, B, and C, as well as an aerotaxis gene, based on their predicted structure. C. fetus subsp. fetus 82-40 chemoreceptor and chemotaxis signal transduction pathway genes have close phylogenetic relationship of chemotaxis genes between Campylobacteraceae and Helicobacteraceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, Klimmek O, Nandakumar R, Gross R, Rosinus A, Keller H, Jagtap P, Linke B, Meyer F, Lederer H, Schuster SC (2003) Complete genome sequence and analysis of Wolinella succinogenes. Proc Natl Acad Sci USA 100(20):11690–11695. doi:10.1073/pnas.1932838100

    Article  PubMed  CAS  Google Scholar 

  • Dennis SM (1975) Perinatal lamb mortality in Western Australia: 5. Vibrionic infection. Australian veterinary J 51(1):11–13

    Google Scholar 

  • Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13:457–512. doi:10.1146/annurev.cellbio.13.1.457

    Article  PubMed  CAS  Google Scholar 

  • Ferrero RL, Lee A (1988) Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod-shaped bacteria. J Gen Microbiol 134(1):53–59

    PubMed  CAS  Google Scholar 

  • Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, Brinkac LM, DeBoy RT, Parker CT, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Sullivan SA, Shetty JU, Ayodeji MA, Shvartsbeyn A, Schatz MC, Badger JH, Fraser CM, Nelson KE (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species. PLoS Biol 3 (1):e15. doi:10.1371/journal.pbio.0030015

  • Fredrick KL, Helmann JD (1994) Dual chemotaxis signaling pathways in Bacillus subtilis: a sigma D-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J Bacteriol 176(9):2727–2735

    PubMed  CAS  Google Scholar 

  • Garcia MM, Ruckerbauer GM, Eaglesome MD, Boisclair WE (1983) Detection of Campylobacter fetus in artificial insemination bulls with a transport enrichment medium. Can J Comparative Med 47(3):336–340

    CAS  Google Scholar 

  • Hartley-Tassell LE, Shewell LK, Day CJ, Wilson JC, Sandhu R, Ketley JM, Korolik V (2010) Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol Microbiol 75(3):710–730. doi:10.1111/j.1365-2958.2009.07010.x

    Article  PubMed  CAS  Google Scholar 

  • Harvey S, Greenwood JR (1985) Isolation of Campylobacter fetus from a pet turtle. J Clin Microbiol 21(2):260–261

    PubMed  CAS  Google Scholar 

  • Hugdahl MB, Beery JT, Doyle MP (1988) Chemotactic behavior of Campylobacter jejuni. Infect Immun 56(6):1560–1566

    PubMed  CAS  Google Scholar 

  • Korolik V, Ketley JM (2008) Campylobacter chemosensory pathway. In: Nachamkin I, Blaser MJ (eds) Campylobacter. American Society for Microbiology, Washington, pp 351–366

  • Lee A, O’Rourke JL, Barrington PJ, Trust TJ (1986) Mucus colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni: a mouse cecal model. Infect Immun 51(2):536–546

    PubMed  CAS  Google Scholar 

  • Marchant J, Wren B, Ketley J (2002) Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol 10(4):155–159

    Article  PubMed  CAS  Google Scholar 

  • Meinershagen WA, Waldhalm DG, Frank FW, Scrivner LH (1965) Magpies as a reservoir of infection for ovine vibriosis. J Am Veterinary Med Assoc 147(8):843–845

    CAS  Google Scholar 

  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403(6770):665–668. doi:10.1038/35001088

    Article  PubMed  CAS  Google Scholar 

  • Parrish JR, Yu J, Liu G, Hines JA, Chan JE, Mangiola BA, Zhang H, Pacifico S, Fotouhi F, DiRita VJ, Ideker T, Andrews P, Finley RL, Jr. (2007) A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 8(7):R130. doi:10.1186/gb-2007-8-7-r130

  • Szymanski CM, King M, Haardt M, Armstrong GD (1995) Campylobacter jejuni motility and invasion of Caco-2 cells. Infect Immun 63(11):4295–4300

    PubMed  CAS  Google Scholar 

  • Takata T, Fujimoto S, Amako K (1992) Isolation of nonchemotactic mutants of Campylobacter jejuni and their colonization of the mouse intestinal tract. Infect Immun 60(9):3596–3600

    PubMed  CAS  Google Scholar 

  • Terry K, Williams SM, Connolly L, Ottemann KM (2005) Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect Immun 73(2):803–811

    Article  PubMed  CAS  Google Scholar 

  • Terry K, Go AC, Ottemann KM (2006) Proteomic mapping of a suppressor of non-chemotactic cheW mutants reveals that Helicobacter pylori contains a new chemotaxis protein. Mol Microbiol 61(4):871–882

    Article  PubMed  CAS  Google Scholar 

  • Thompson SA, Blaser MJ (1995) Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH. Infect Immun 63(6):2185–2193

    PubMed  CAS  Google Scholar 

  • Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388(6642):539–547

    Article  PubMed  CAS  Google Scholar 

  • Tripathi LP, Sowdhamini R (2008) Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes. BMC genomics 9:549

    Article  PubMed  Google Scholar 

  • Tu ZC, Zeitlin G, Gagner JP, Keo T, Hanna BA, Blaser MJ (2004) Campylobacter fetus of reptile origin as a human pathogen. J Clin Microbiol 42(9):4405–4407

    Article  PubMed  Google Scholar 

  • Vandamme P, Falsen E, Rossau R, Hoste B, Segers P, Tytgat R, De Ley J (1991) Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Systematic Bacteriol 41(1):88–103

    Google Scholar 

  • Veron M, Chatelai R (1973) Taxonomic study of genus Campylobacter Sebald and Veron and Designation of Neotype Strain for Type Species, Campylobacter-Fetus (Smith and Taylor) Sebald and Veron. Int J Syst Bacteriol 23(2):122–134

    Article  Google Scholar 

  • Watson WA, Hunter D, Bellhouse R (1967) Studies on vibrionic infection of sheep and carrion crows. The Veterinary record 81(10):220–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dina Fahmy is supported by the Griffith University International Postgraduate Research Scholarship (GUIPRS). Christopher Day is supported by a Griffith University Postdoctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Korolik.

Additional information

Communicated by Sebastian Suerbaum.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahmy, D., Day, C.J. & Korolik, V. Comparative in silico analysis of chemotaxis system of Campylobacter fetus . Arch Microbiol 194, 57–63 (2012). https://doi.org/10.1007/s00203-011-0754-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0754-1

Keywords

Navigation