Skip to main content

Advertisement

Log in

Salivary enzymes and exhaled air affect Streptococcus salivarius growth and physiological state in complemented artificial saliva

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

To better understand the phenomena governing the establishment of the oral bacterium Streptococcus salivarius in the mouth, the effect of some environmental factors has been studied in complemented artificial saliva, under oral pH and temperature conditions. Three salivary enzymes at physiological concentrations were tested: peroxidase, lysozyme and amylase, as well as injection of exhaled air. Injection of air containing 5% CO2 and 16% O2 induced a deleterious effect on S. salivarius K12, mainly by increasing redox potential. Addition of lysozyme slightly affected the physiological state of S. salivarius by altering membrane integrity. In contrast, peroxidase was not detrimental as it made it possible to decrease the redox potential. The addition of amylase reduced the specific growth rate of S. salivarius by formation of a complex with amylase and mucins, but led to high final biomass, as a result of enzymatic degradation of some nutrients. Finally, this work demonstrated that salivary enzymes had a slight impact on S. salivarius behaviour. It can thus be concluded that this bacterium was well adapted to in-mouth conditions, as it was able to resist certain salivary enzymes, even if tolerance to expired air was affected, as a result of an increased redox potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Amanatidou A, Bennik M, Gorris L, Smid EJ (2001) Superoxide dismutase plays an important role in the survival of Lactobacillus sake upon exposure to elevated oxygen. Arch Microbiol 176:79–88

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw DJ, Marsh PD, Allison C, Schilling KM (1996) Effect of oxygen, inoculum composition and flow rate on development of mixed-culture oral biofilms. Microbiology 142:623–629

    Article  PubMed  CAS  Google Scholar 

  • Burton JP, Chilcott CN, Moore CJ, Speiser G, Tagg JR (2006) A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J Appl Microbiol 100:754–764

    Article  PubMed  CAS  Google Scholar 

  • Cachon R, Jeanson S, Aldarf M, Divies C (2002) Characterisation of lactic starters based on acidification and reduction activities. Lait 82:281–288

    Article  CAS  Google Scholar 

  • Carlsson J, Iwami Y, Yamada T (1983) Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase–thiocyanate–hydrogen peroxide. Infect Immun 40:70–80

    PubMed  CAS  Google Scholar 

  • Dumas C, Champagne A, Lavoie MC (1987) Proteolytic activity of bacteria isolated from the oral cavities of BALB/c mice toward salivary proteins. J Dent Res 66:62–64

    Article  PubMed  CAS  Google Scholar 

  • Gandara BK, Izutsu KT, Truelove EL, Mandel ID, Sommers EE, Ensign WY (1987) Sialochemistry of whole, parotid, and labial minor gland saliva in patients with oral lichen planus. J Dent Res 66:1619–1622

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mendoza A, Liebana J, Castillo AM, de la Higuera A, Piedrola G (1993) Evaluation of the capacity of oral streptococci to produce hydrogen peroxide. J Med Microbiol 39:434–439

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ, Kapsimalis B, Socransky SS (1964) The source of salivary bacteria. Arch Oral Biol 9:101–103

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M (1992) Reduced nicotinamide adenine-dinucleotide oxidase involvement in defense against oxygen-toxicity of Streptococcus mutans. Oral Microbiol Immunol 7:309–314

    Article  PubMed  CAS  Google Scholar 

  • Iontcheva I, Oppenheim FG, Troxler RF (1997) Humans salivary mucin MG1 selectively forms heterotypic complexes with amylase, proline-rich proteins, statherin, and histatins. J Dent Res 76:734–743

    Article  PubMed  CAS  Google Scholar 

  • Kilian M, Nyvad B (1990) Ability to bind salivary alpha-amylase discriminates certain viridans group streptococcal species. J Clin Microbiol 28:2576–2577

    PubMed  CAS  Google Scholar 

  • Lahteenmaki MT, Salo MS, Tenovuo JO, Helminen AV, Vilja PJ, Huupponen RK (2000) The effects of glycopyrrolate on oral mucous host defenses in healthy volunteers. Anesth Analg 91:467–472

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Chung JW, Kim YK, Chung SC, Kho HS (2007) Comparison of the composition of oral mucosal residual saliva with whole saliva. Oral Dis 13:550–554

    Article  PubMed  Google Scholar 

  • Leke N, Grenier D, Goldner M, Mayrand D (1999) Effects of hydrogen peroxide on growth and selected properties of Porphyromonas gingivalis. FEMS Microbiol Lett 174:347–353

    Article  PubMed  CAS  Google Scholar 

  • Mandel ID (1987) The functions of saliva. J Dent Res 66:623–627

    PubMed  Google Scholar 

  • Masschalck B, Michiels CW (2003) Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol 29:191–214

    Article  PubMed  CAS  Google Scholar 

  • Modi S, Behere DV, Samaresh M (1991) Horseradish peroxidase catalyzed oxidation of thiocyanate by hydrogen peroxide: comparison with lactoperoxidase-catalysed oxidation and role of distal histidine. Biochim Biophys Acta 1080:45–50

    Article  PubMed  CAS  Google Scholar 

  • Morris JG (1979) Oxygen and growth of the oral bacteria. In: Kleinberg I, Ellison SA, Mandel ID (eds) Saliva and dental caries: proceedings of a workshop on saliva and dental caries, School of Dental Medicine, Health Sciences Center, State University of New York at Stony Brook, Stony Brook, June 5–7 1978. Information Retrieval Inc., New York. ISBN: 0917000064

  • Pruitt KM, Tenovuo J, Mansson-Rahemtulla B, Harrington P, Baldone DC (1986) Is thiocyanate peroxidation at equilibrium in vivo? Biochim Biophys Acta 870:385–391

    Article  PubMed  CAS  Google Scholar 

  • Rault A, Béal C, Ghorbal S, Ogier JC, Bouix M (2007) Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology 55:35–43

    Article  PubMed  CAS  Google Scholar 

  • Roger P, Delettre J, Bouix M, Béal C (2011) Characterization of Streptococcus salivarius growth and maintenance in artificial saliva. J Appl Microbio 111:631–641

    Google Scholar 

  • Shimamoto T, Fukui K, Kodama T, Shimono T, Ohta H, Kato K (1990) Effects of oxygen on growth of Streptococcus mutans. Shika Kiso Igakkai Zasshi 32:10–19

    PubMed  CAS  Google Scholar 

  • Tagg JR, Dierksen KP, Upton M (2004) Lantibiotic. US Patent 6773912 B1

  • Thomas EL, Milligan TW, Joyner RE, Jefferson MM (1994) Antibacterial activity of hydrogen peroxide and the lactoperoxidase–hydrogen peroxide–thiocyanate system against oral streptococci. Infect Immun 62:529–535

    PubMed  CAS  Google Scholar 

  • Van der Hoeven JS, Camp PJ (1991) Synergistic degradation of mucin by Streptococcus oralis and Streptococcus sanguis in mixed chemostat cultures. J Dent Res 70:1041–1044

    Article  PubMed  Google Scholar 

  • Wang YB, Germaine GR (1993) Effects of pH, potassium, magnesium, and bacterial growth phase on lysozyme inhibition of glucose fermentation by Streptococcus mutans 10449. J Dent Res 72:907–911

    Article  PubMed  CAS  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Béal.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roger, P., Harn-Arsa, S., Delettre, J. et al. Salivary enzymes and exhaled air affect Streptococcus salivarius growth and physiological state in complemented artificial saliva. Arch Microbiol 193, 905–910 (2011). https://doi.org/10.1007/s00203-011-0746-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0746-1

Keywords

Navigation