Skip to main content
Log in

Antimicrobial factor from Bacillus amyloliquefaciens inhibits Paenibacillus larvae, the causative agent of American foulbrood

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus amyloliquefaciens LBM 5006 produces an antimicrobial factor active against Paenibacillus larvae, a major honeybee pathogen. The antagonistic effect and the mode of action of the antimicrobial factor were investigated. The antibacterial activity was produced starting at mid-logarithmic growth phase, reaching its maximum during the stationary phase. Exposure of cell suspensions of P. larvae to this antimicrobial resulted in loss of cell viability and reduction in optical density associated with cell lysis. Scanning electron microscopy showed damaged cell envelope and loss of protoplasmic material. The antimicrobial factor was stable for up to 80°C, but it was sensitive to proteinase K and trypsin. Mass spectrometry analysis indicates that the antimicrobial activity is associated with iturin-like peptides. The antimicrobial factor from B. amyloliquefaciens LBM 5006 showed a bactericidal effect against P. larvae cells and spores. This is the first report on iturin activity against P. larvae. This antimicrobial presents potential for use in the control of American foulbrood disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahern M, Verschueren S, van Sindersen D (2003) Isolation and characterization of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol Lett 220:127–131

    Article  PubMed  CAS  Google Scholar 

  • Alippi AM (2000) Is Terramycin losing its effectiveness against AFB? The Argentinian experience. Bee Biz 11:27–29

    Google Scholar 

  • Alippi AM, Reynaldi FJ (2006) Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. J Invertebr Pathol 91:141–146

    Article  PubMed  Google Scholar 

  • Alippi AM, Reynaldi FJ, López AC, De Giusti MR, Aguilar OM (2004) Molecular epidemiology of Paenibacillus larvae larvae and incidence of American foulbrood in Argentinean honeys from Buenos Aires province. J Apic Res 43:135–143

    CAS  Google Scholar 

  • Antúnez K, Anido M, Schlapp G, Evans JD, Zunino P (2009) Characterization of secreted proteases of Paenibacillus larvae, potential virulence factors involved in honeybee larval infection. J Invertebr Pathol 102:129–132

    Article  PubMed  Google Scholar 

  • Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108:386–395

    Article  PubMed  CAS  Google Scholar 

  • Ashiralieva A, Genersch E (2006) Reclassification, genotypes and virulence of Paenibacillus larvae, the etiological agent of American foulbrood in honeybees—a review. Apidologie 37:411–420

    Article  Google Scholar 

  • Assié LK, Deleu M, Arnaud L, Paquot M, Thonart P, Gaspar CH, Haubruge E (2002) Inseticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 67:647–655

    PubMed  Google Scholar 

  • Barboza-Corona JE, Vázquez-Acosta H, Bideshi DK, Salcedo-Hernández R (2007) Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 187:117–126

    Article  PubMed  CAS  Google Scholar 

  • Bastos EMAF, Simone M, Jorge DM, Soares AEE, Spivak M (2008) In vitro study of the antimicrobial activity of Brazilian propolis against Paenibacillus larvae. J Invertebr Pathol 97:273–281

    Article  PubMed  CAS  Google Scholar 

  • Benitez LB, Velho RV, Medina LFC, Brandelli A (2010) Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM 5006. J Microbiol 48:791–797

    Article  PubMed  CAS  Google Scholar 

  • Bizani D, Dominguez APM, Brandelli A (2005) Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Lett Appl Microbiol 41:269–273

    Article  PubMed  CAS  Google Scholar 

  • Caldeira AT, Feio SS, Arteiro JMS, Coelho AV, Roseiro JC (2008) Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. J Appl Microbiol 104:808–816

    Article  PubMed  CAS  Google Scholar 

  • Charbonneau R, Gosselin P, Thibault C (1992) Irradiation and American foulbrood. Am Bee J 132:249–251

    Google Scholar 

  • Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL (2008) Isolation and characterization of lipopeptide antibiotics produce by Bacillus subtilis. Lett Appl Microbiol 47:180–186

    Article  PubMed  CAS  Google Scholar 

  • Cintas LM, Casaus MP, Herranz C, Nes IF, Hernandez PE (2001) Bacteriocins of lactic acid bacteria. Food Sci Technol Int 7:281–305

    CAS  Google Scholar 

  • Cladera-Olivera F, Caron GR, Brandelli A (2004) Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett Appl Microbiol 38:251–256

    Article  PubMed  CAS  Google Scholar 

  • De Graaf DC, Alippi AM, Brown M, Evans JD, Feldlaufer M, Gregorc A, Hornitzky M, Pernal SF, Schuch DMT, Titera D, Tomkies V, Ritter W (2006) Diagnosis of American foulbrood in honey bees: a synthesis and proposed analytical protocols. Lett Appl Microbiol 43:583–590

    Article  PubMed  Google Scholar 

  • Deleu M, Paquot J, Nylander T (2005) Fengycin interaction with lipid monlayers at the air-aqueous interface—implications for the effect of fengycin in biological membranes. J Colloid Interface Sci 283:358–365

    Article  PubMed  CAS  Google Scholar 

  • Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of Bacillus probiotics available for human uses. Appl Environ Microbiol 70:2161–2171

    Article  CAS  Google Scholar 

  • Evans JD (2003) Diverse origins of tetracycline resistance en the honeybee bacterial pathogen Paenibacillus larvae. J Invertebr Pathol 83:46–50

    Article  PubMed  CAS  Google Scholar 

  • Evans JD (2004) Transcriptional immune responses by honey bee larvae during invasion by the bacterial pathogen, Paenibacillus larvae. J Invertebr Pathol 85:105–111

    Article  PubMed  CAS  Google Scholar 

  • Evans JD, Armstrong TN (2005) Inhibition of the American foulbrood bacterium, Paenibacillus larvae, by bacteria isolated from honey bees. J Apic Res 44:168–171

    CAS  Google Scholar 

  • Flesar J, Havlik J, Kloucek P, Rada V, Titera D, Bednar M, Stropnicky M, Kokoska L (2010) In vitro growth inhibitory effect of plant-derived extracts and compounds against Paenibacillus larvae and their acute oral toxicity to adult honey bees. Vet Microbiol 145:129–133

    Article  PubMed  CAS  Google Scholar 

  • Gende LB, Maggi MD, Fritz R, Eguaras MJ, Bailac PN, Ponzi MI (2009) Antimicrobial activity of Pimpinella anisum and Foeniculum vulgare essential oils against Paenibacillus larvae. J Ess Oil Res 21:91–93

    CAS  Google Scholar 

  • Genersch E, Ashiralieva A, Fries I (2005) Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honeybees. Appl Environ Microbiol 71:7551–7555

    Article  PubMed  CAS  Google Scholar 

  • Genersch E, Forsgren E, Pentikainen J, Ashiralieva A, Rauch S, Kilwinski J, Fries I (2006) Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int J Syst Evol Microbiol 56:501–511

    Article  PubMed  CAS  Google Scholar 

  • Genersh E (2010) American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol 103:S10–S19

    Article  Google Scholar 

  • González MJ, Marioli JM (2010) Antibacterial activity of water extracts and essential oils of various aromatic plants against Paenibacillus larvae, the causative agent of American foulbrood. J Invertebr Pathol 104:209–213

    Article  PubMed  Google Scholar 

  • Haney EF, Nathoo S, Vogel HJ, Prenner EJ (2010) Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Chem Phys Lipids 152:82–93

    Article  Google Scholar 

  • Hiradate S, Yoshida S, Sugie H, Tada H, Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693–698

    Article  PubMed  CAS  Google Scholar 

  • Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J (2004) Genetic analysis of the biosynthesis of non-ribosomal polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genom 272:363–378

    Article  CAS  Google Scholar 

  • Hornitzky MAZ (1998) The spread of Paenibacillus larvae subsp larvae infections in an apiary. J Apic Res 37:261–265

    Google Scholar 

  • Hrabak J, Martinek K (2007) Screening of secreted proteases of Paenibacillus larvae by using substrate-SDS-polyacrylamide gel electrophoresis. J Apic Res 46:160–164

    Article  CAS  Google Scholar 

  • Huang X, Gao X, Zheng L, Hao G (2009) Optimization of sterilization of Salmonella enteritidis in meat by surfactin and iturin using a response surface method. Int J Pept Res Therap 15:61–67

    Article  CAS  Google Scholar 

  • Kalchayanand N, Dunneb P, Sikes A, Ray B (2004) Viability loss and morphology change of foodborne pathogens following exposure to hydrostatic pressures in the presence and absence of bacteriocins. Int J Food Microbiol 91:91–98

    Article  PubMed  CAS  Google Scholar 

  • Klich MA, Arthur KS, Lax AR, Bland JM (1994) Iturin A: a potential new fungicide for stored grains. Mycopathologia 127:123–127

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Kim SH, Park IH, Chung SY, Choi YL (2007) Isolation and structural analysis of bamylocin A, novel lipopetide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil emulsifying activity. Arch Microbiol 188:307–312

    Article  PubMed  CAS  Google Scholar 

  • Lisboa MP, Bonatto D, Bizani D, Henriques JAP, Brandelli A (2006) Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. Int Microbiol 9:111–118

    PubMed  CAS  Google Scholar 

  • Matheson A, Reid M (1992) Strategies for the prevention and control of American foulbrood. Parts I, II, and III. Am Bee J 132:471–475

    Google Scholar 

  • Motta AS, Brandelli A (2002) Characterization of an antibacterial peptide produced by Brevibacterium linens. J Appl Microbiol 92:63–70

    Article  PubMed  CAS  Google Scholar 

  • Motta AS, Cannavan FS, Tsai SM, Brandelli A (2007) Characterization of a broad range antibacterial substance from a new Bacillus species isolated from Amazon basin. Arch Microbiol 188:367–375

    Article  PubMed  CAS  Google Scholar 

  • Motta AS, Flores FS, Souto AA, Brandelli A (2008) Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie van Leeuwenhoek 93:275–284

    Article  PubMed  CAS  Google Scholar 

  • Olofsson TC, Vasquez A (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Aplis melifera. Curr Microbiol 57:356–363

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  PubMed  CAS  Google Scholar 

  • Pattnaik P, Kaushik JK, Grover S, Batish VK (2001) Purification and characterization of a bacteriocin-like compound (lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J Appl Microbiol 91:636–645

    Article  PubMed  CAS  Google Scholar 

  • Ratnieks FLW (1992) American foulbrood: the spread and control of an important disease of the honeybee. Bee World 73:177–191

    Google Scholar 

  • Sabaté DC, Carrillo L, Audisio MC (2009) Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Res Microbiol 160:193–199

    Article  PubMed  Google Scholar 

  • Schuch DMT, Madden RH, Sattler A (2002) An improved method for the detection and presumptive identification of Paenibacillus larvae subsp. larvae spores in honey. J Apic Res 40:59–64

    Google Scholar 

  • Sirtori LR, Motta AS, Brandelli A (2008) Mode of action of antimicrobial peptide P45 on Listeria monocytogenes. J Basic Microbiol 48:393–400

    Article  PubMed  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  PubMed  CAS  Google Scholar 

  • Viedma PM, Abriouel H, Omar NB, López RL, Gálvez A (2010) Effect of enterocin EJ97 against Geobacillus stearothermophilus vegetative cells and endospores in canned foods and beverages. Eur Food Res Technol 230:513–519

    Article  Google Scholar 

  • Yao S, Gao X, Fuchsbauer N, Hillen W, Vater J, Wang J (2003) Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Curr Microbiol 47:272–277

    Article  PubMed  CAS  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the technical support of Centro de Microscopia Eletrônica (CME-UFRGS). This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benitez, L.B., Velho, R.V., de Souza da Motta, A. et al. Antimicrobial factor from Bacillus amyloliquefaciens inhibits Paenibacillus larvae, the causative agent of American foulbrood. Arch Microbiol 194, 177–185 (2012). https://doi.org/10.1007/s00203-011-0743-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0743-4

Keywords

Navigation