Skip to main content

Advertisement

Log in

Characterization of the autophosphorylating kinase, PkaF, in Streptomyces coelicolor A3(2) M130

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Streptomyces coelicolor, the model species for morphologically complex actinomycete bacteria, has unique characteristics such as morphological and physiological differentiation, which are controlled by various factors and several protein kinases. From the whole genomic sequence of S. coelicolor A3(2), 44 putative serine/threonine (Ser/Thr) protein kinases were identified, and the pkaF gene was chosen as the best-conserved protein for typical Ser/Thr protein kinases. pkaF encodes a 667-amino acid protein with a predicted N-terminal Ser/Thr kinase domain and four repeated C-terminal penicillin-binding domains and Ser/Thr kinase-associated (PASTA) domains. Based on PCR, a pkaF gene was cloned and heterologously expressed. PkaF expressed in Escherichia coli had the bigger molecular size than the expected value (75 kDa) and was further purified by Ni2+-NTA agarose affinity column chromatography to homogeneity. The purified PkaF was autophosphorylated through the transfer of the γ-phosphate group of ATP. The extent of phosphorylation was proportional to the amount of PkaF, and the phospho-PkaF was dephosphorylated by the addition of the cell lysate of S. coelicolor A3(2). Although no change was observed in the pkaF disruptant, overexpression of pkaF induced severe repression of morphogenesis and actinorhodin production, but not undecylprodigiosin production, implying that PkaF specifically regulates morphogenesis and actinorhodin production in S. coelicolor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bentley SD, Chater KF, Cerdeño-Tarraga AM et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brown K, Wood S, Buttner MJ (1992) Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2); renaturation of a sigma subunit using GroEL. Mol Microbiol 6:1133–1139

    Google Scholar 

  • Chater KF (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713

    Article  PubMed  CAS  Google Scholar 

  • Choeng YH, Yang JY, Delcroix G, Kim YJ, Chang YK, Hong SK (2007) Expression and characterization of trehalose biosynthetic modules in the adjacent locus of the salbostatin gene cluster. J Microbiol Biotechnol 17:1675–1681

    PubMed  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  • Denis F, Brzezinski R (1991) An improved aminoglycoside resistance gene cassette for use in gram-negative bacteria and Streptomyces. FEMS Microbiol Lett 81:261–264

    Article  CAS  Google Scholar 

  • Durán R, Villarino A, Bellinzoni M, Wehenkel A, Fernandez P, Boitel B, Cole ST, Alzari PM, Cerveñansky C (2005) Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Biochem Biophys Res Commun 333:858–867

    Article  PubMed  Google Scholar 

  • Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA 87:6181–6185

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–62

    Article  PubMed  CAS  Google Scholar 

  • Hong SK, Horinouchi S (1998) Effects of protein kinase inhibitors on in vitro protein phosphorylation and on secondary metabolism and morphogenesis in Streptomyces coelicolor A3(2). J Microbiol Biotechnol 8:325–332

    CAS  Google Scholar 

  • Hong SK, Kito M, Beppu T, Horinouchi S (1991) Phosphorylation of the AfsR production, a global regulatory protein for secondary-metabolite formation in Streptomyces coelicolor A3(2). J Bacteriol 173:2311–2318

    PubMed  CAS  Google Scholar 

  • Horinouchi S (2003) AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 30:462–467

    Article  PubMed  CAS  Google Scholar 

  • Hoshina S, Ueffing M, Weinstein IB (2005) Growth factor-induced DNA synthesis in cells that overproduce protein kinase C. J Cell Physiol 145:262–267

    Article  Google Scholar 

  • Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:2795–2806

    Article  PubMed  CAS  Google Scholar 

  • Igo MM, Ninfa AJ, Silhavy TJ (1989) A bacterial environmental sensor that functions as a protein kinase and stimulates transcriptional activation. Genes Dev 3:598–605

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • James P (2001) Proteome research: mass spectrometry. Springer, Berlin

    Google Scholar 

  • Jeffery BS, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbial Rev 53:450–490

    Google Scholar 

  • Kieser H, Bibb MJ, Buttner MJ, Chater FK, Hopwood DA (2000) Practical streptomyces genetics. The John Innes Foundation, Norwich, UK

    Google Scholar 

  • Madec E, Stensballe A, Kjellström S, Cladière L, Obuchowski M, Jensen ON, Séror SJ (2003) Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis. J Mol Biol 330:459–472

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:327–331

    Article  Google Scholar 

  • Matsumoto A, Hong SK, Ishizuka H, Horinouchi S, Beppu T (1994) Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type kinase. Gene 146:47–56

    Article  PubMed  CAS  Google Scholar 

  • Neu JM, MacMillan SV, Nodwell JR, Wright GD (2002) StoPK-1, a serine/threonine protein kinase from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009, affects oxidative stress response. Mol Microbiol 44:417–430

    Article  PubMed  CAS  Google Scholar 

  • Ogawara H, Aoyagi N, Watanabe M, Urabe H (1999) Sequences and evolutionary analyses of eukaryotic-type protein kinases from Streptomyces coelicolor A3(2). Microbiology 145:3343–3352

    PubMed  CAS  Google Scholar 

  • Oh EA, Kim MS, Chi WJ, Kim JH, Hong SK (2007) Characterization of the sgtR1 and sgtR2 genes and their role in regulating expression of the sprT gene encoding Streptomyces griseus trypsin. FEMS Microbiol Lett 276:75–82

    Article  PubMed  CAS  Google Scholar 

  • Peck SC (2006) Analysis of protein phosphorylation: methods and strategies for studying kinases and substrates. Plant J 45:512–522

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Smith BE (1997) Protein sequencing protocols. Humana Press, Totowa

    Google Scholar 

  • Tomono A, Mashiko M, Shimazu T, Inoue H, Nagasawa H, Yoshida M, Ohnishi Y, Horinouchi S (2006) Self-activation of serine/threonine kinase AfsK on autophosphorylation at threonine-168. J Antibiot 59:117–123

    Article  PubMed  CAS  Google Scholar 

  • Umeyama T, Lee PC, Ueda K, Horinouchi S (1999) An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145:2281–2292

    PubMed  CAS  Google Scholar 

  • Yeats C, Finn RD, Bateman A (2002) The PASTA domain, a beta-lactam-binding domain. Trends Biochem Sci 27:438–440

    Article  PubMed  CAS  Google Scholar 

  • Young TA, Delagoutte B, Endrizzi JA, Falick AM, Alber T (2003) Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Biol 10:168–174

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Munoz-Dorado J, Inouye M, Inouye S (1992) Identification of a putative eukaryotic-like protein kinase family in the developmental bacterium Myxycoccus xanthus. J Bacteriol 174:5450–5453

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant No. 2009-0073015 from the Basic Research Program of the National Research Foundation (KRF) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kwang Hong.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, E.A., Chi, WJ., Kim, MS. et al. Characterization of the autophosphorylating kinase, PkaF, in Streptomyces coelicolor A3(2) M130. Arch Microbiol 193, 845–856 (2011). https://doi.org/10.1007/s00203-011-0721-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0721-x

Keywords

Navigation