Skip to main content
Log in

In vitro and in vivo pathogenicity of Salmonella enteritidis clinical strains isolated from North America

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Salmonella enteritidis is a leading cause of food-borne gastroenteritis worldwide. In this study, 48 strains of S. enteritidis isolated from clinical cases of salmonellosis in North America were tested for their virulence-associated traits including cell invasiveness, biofilm, motility, presence of a virulence plasmid, and virulence in orally challenged mice. The majority of strains exhibited high invasiveness (n = 45), whereas only few strains (n = 3) exhibited low invasiveness. All low-invasive strains (100%, 3/3) were biofilm negative, whereas the distribution of biofilm positive and negative phenotypes among high-invasive strains was 53.4% (24/45) and 46.6% (21/45), respectively. The in vitro cell invasiveness was not associated with biofilm formation (Fisher’s exact test, P = 0.23) or the presence of a spvB gene, a marker for the virulence-associated plasmid (Fisher’s exact test, P = 1). There was no correlation between cell invasiveness and motility (Spearman’s rank test, r = −0.15; P = 0.27). Virulence testing in orally challenged mice revealed that the low-invasive strains were as virulent as high-invasive strains, indicating that in vitro cell invasiveness did not correlate with in vivo virulence. In conclusion, we show that despite phenotypic diversity among clinical strains of S. enteritidis, the majority of strains are highly invasive in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agron PG et al (2001) Identification by subtractive hybridization of sequences specific for S. enterica serovar enteritidis. Appl Environ Microbiol 67:4984–4991

    Article  PubMed  CAS  Google Scholar 

  • Alisantosa B, Shivaprasad HL, Dhillon AS, Jack O, Schaberg D, Bandli D (2000) Pathogenicity of S. enteritidis phage types 4, 8 and 23 in specific pathogen free chicks. Avian Pathol 29:583–592

    Article  PubMed  CAS  Google Scholar 

  • Allen-Vercoe E, Woodward MJ (1999a) Colonisation of the chicken caecum by afimbriate and aflagellate derivatives of S. enterica serotype Enteritidis. Vet Microbiol 69:265–275

    Article  PubMed  CAS  Google Scholar 

  • Allen-Vercoe E, Woodward MJ (1999b) The role of flagella, but not fimbriae, in the adherence of S. enterica serotype Enteritidis to chick gut explant. J Med Microbiol 48:771–780

    Article  PubMed  CAS  Google Scholar 

  • Alvarez J et al (2004) Development of a multiplex PCR technique for detection and epidemiological typing of salmonella in human clinical samples. J Clin Microbiol 42:1734–1738

    Article  PubMed  CAS  Google Scholar 

  • Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16

    PubMed  CAS  Google Scholar 

  • Bakshi CS, Singh VP, Malik M, Singh RK, Sharma B (2003) 55 kb plasmid and virulence-associated genes are positively correlated with S. enteritidis pathogenicity in mice and chickens. Vet Res Commun 27:425–432

    Article  PubMed  CAS  Google Scholar 

  • Betancor L et al (2009) Genomic and phenotypic variation in epidemic-spanning S. enterica serovar Enteritidis isolates. BMC Microbiol 9:237

    Article  PubMed  Google Scholar 

  • CDC (2007) Salmonella serotype Enteritidis infections among workers producing poultry vaccine, Maine, November–December 2006. Morb Mort Wkly Rep 56:877–879

    Google Scholar 

  • CDC (2010) http://www.cdc.gov/salmonella/enteritidis/. Accessed on 21 Feb 2010

  • Cho S, Boxrud DJ, Bartkus JM, Whittam TS, Saeed M (2007) Multiple-locus variable-number tandem repeat analysis of S. enteritidis isolates from human and non-human sources using a single multiplex PCR. FEMS Microbiol Lett 275:16–23

    Article  PubMed  CAS  Google Scholar 

  • Crum-Cianflone NF (2008) Salmonellosis and the gastrointestinal tract: more than just peanut butter. Curr Gastroenterol Rep 10:424–431

    Article  PubMed  Google Scholar 

  • De Buck J, Van Immerseel F, Haesebrouck F, Ducatelle R (2004) Colonization of the chicken reproductive tract and egg contamination by Salmonella. J Appl Microbiol 97:233–245

    Article  PubMed  Google Scholar 

  • Desin TS et al (2009) S. enterica serovar enteritidis pathogenicity island 1 is not essential for but facilitates rapid systemic spread in chickens. Infect Immun 77:2866–2875

    Article  PubMed  CAS  Google Scholar 

  • Dhillon AS, Alisantosa B, Shivaprasad HL, Jack O, Schaberg D, Bandli D (1999) Pathogenicity of S. enteritidis phage types 4, 8, and 23 in broiler chicks. Avian Dis 43:506–515

    Article  PubMed  CAS  Google Scholar 

  • Dibb-Fuller MP, Allen-Vercoe E, Thorns CJ, Woodward MJ (1999) Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by S. enteritidis. Microbiology 145(Pt 5):1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Doran JL et al (1996) Diagnostic potential of sefA DNA probes to S. enteritidis and certain other O-serogroup D1 Salmonella serovars. Mol Cell Probes 10:233–246

    Article  PubMed  CAS  Google Scholar 

  • Galan JE (1996) Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20:263–271

    Article  PubMed  CAS  Google Scholar 

  • Gantois I et al (2009) Mechanisms of egg contamination by S. enteritidis . FEMS Microbiol Rev 33:718–738

    Article  PubMed  CAS  Google Scholar 

  • Gast RK (1993) Detection of S. enteritidis in experimentlaly infected laying hens by culturing pools of egg contents. Poult Sci 72:267–274

    PubMed  CAS  Google Scholar 

  • Gast RK, Beard CW (1990a) Isolation of S. enteritidis from internal organs of experimentally infected hens. Avian Dis 34:991–993

    Article  PubMed  CAS  Google Scholar 

  • Gast RK, Beard CW (1990b) Production of S. enteritidis-contaminated eggs by experimentally infected hens. Avian Dis 34:438–446

    Article  PubMed  CAS  Google Scholar 

  • Gast RK, Benson ST (1996) Intestinal colonization and organ invasion in chicks experimentally infected with S. enteritidis phage type 4 and other phage types isolated from poultry in the US. Avian Dis 40:853–857

    Article  PubMed  CAS  Google Scholar 

  • Ghosh TS, Vogt RL (2006) Cluster of invasive salmonellosis cases in a federal prison in Colorado. Am J Infect Control 34:348–350

    Article  PubMed  Google Scholar 

  • Gordon MA et al (2008) Epidemics of invasive Salmonella enterica serovar enteritidis and S. enterica Serovar typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin Infect Dis 46:963–969

    Article  PubMed  Google Scholar 

  • Guard-Bouldin J, Gast RK, Humphrey TJ, Henzler DJ, Morales C, Coles K (2004) Subpopulation characteristics of egg-contaminating S. enterica serovar Enteritidis as defined by the lipopolysaccharide O chain. Appl Environ Microbiol 70:2756–2763

    Article  PubMed  CAS  Google Scholar 

  • Guard-Petter J, Keller LH, Rahman MM, Carlson RW, Silvers S (1996) A novel relationship between O-antigen variation, matrix formation, and invasiveness of S. enteritidis. Epidemiol Infect 117:219–231

    Article  PubMed  CAS  Google Scholar 

  • Hapfelmeier S, Ehrbar K, Stecher B, Barthel M, Kremer M, Hardt WD (2004) Role of the Salmonella pathogenicity island 1 effector proteins SipA, SopB, SopE, and SopE2 in S. enterica subspecies 1 serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 72:795–809

    Article  PubMed  CAS  Google Scholar 

  • Hara A et al (1993) Changes of proliferative activity and phenotypes in spontaneous differentiation of a colon cancer cell line. Jpn J Cancer Res 84:625–632

    Article  PubMed  CAS  Google Scholar 

  • Humphrey TJ, Williams A, McAlpine K, Lever MS, Guard-Petter J, Cox JM (1996) Isolates of S. enterica Enteritidis PT4 with enhanced heat and acid tolerance are more virulent in mice and more invasive in chickens. Epidemiol Infect 117:79–88

    Article  PubMed  CAS  Google Scholar 

  • Katsenos C, Anastasopoulos N, Patrani M, Mandragos C (2008) S. enteritidis meningitis in a first time diagnosed AIDS patient: case report. Cases J 1:5

    Article  PubMed  Google Scholar 

  • Kimura AC et al (2004) Chicken consumption is a newly identified risk factor for sporadic S. enterica serotype Enteritidis infections in the US: a case-control study in FoodNet sites. Clin Infect Dis 38(Suppl 3):S244–S252

    Article  PubMed  Google Scholar 

  • Kobayashi H, Hall GS, Tuohy MJ, Knothe U, Procop GW, Bauer TW (2009) Bilateral periprosthetic joint infection caused by S. enterica serotype Enteritidis, and identification of Salmonella sp using molecular techniques. Int J Infect Dis 13:e463–e466

    Article  PubMed  CAS  Google Scholar 

  • Kusters JG, Mulders-Kremers GA, van Doornik CE, van der Zeijst BA (1993) Effects of multiplicity of infection, bacterial protein synthesis, and growth phase on adhesion to and invasion of human cell lines by S. typhimurium. Infect Immun 61:5013–5020

    PubMed  CAS  Google Scholar 

  • Little CL et al (2008) Survey of Salmonella contamination of raw shell eggs used in food service premises in the UK, 2005–2006. J Food Prot 71:19–26

    PubMed  CAS  Google Scholar 

  • Lu S, Manges AR, Xu Y, Fang FC, Riley LW (1999) Analysis of virulence of clinical isolates of S. enteritidis in vivo and in vitro. Infect Immun 67:5651–5657

    PubMed  CAS  Google Scholar 

  • Ly KT, Casanova JE (2007) Mechanisms of Salmonella entry into host cells. Cell Microbiol 9:2103–2111

    Article  PubMed  CAS  Google Scholar 

  • Malorny B, Bunge C, Helmuth R (2007) A real-time PCR for the detection of S. enteritidis in poultry meat and consumption eggs. J Microbiol Methods 70:245–251

    Article  PubMed  CAS  Google Scholar 

  • Malorny B, Junker E, Helmuth R (2008) Multi-locus variable-number tandem repeat analysis for outbreak studies of S. enterica serotype Enteritidis. BMC Microbiol 8:84

    Article  PubMed  Google Scholar 

  • Marcus R et al (2004) Dramatic decrease in the incidence of Salmonella serotype Enteritidis infections in 5 FoodNet sites: 1996–1999. Clin Infect Dis 38(Suppl 3):S135–S141

    Article  PubMed  Google Scholar 

  • Morpeth SC, Ramadhani HO, Crump JA (2009) Invasive non-Typhi Salmonella disease in Africa. Clin Infect Dis 49:606–611

    Article  PubMed  Google Scholar 

  • Mutlu H, Babar J, Maggiore PR (2009) Extensive S. enteritidis endocarditis involving mitral, tricuspid valves, aortic root and right ventricular wall. J Am Soc Echocardiogr 22:210, e211–e213

  • Olsen JE, Tiainen T, Brown DJ (1999) Levels of virulence are not determined by genomic lineage of S. enterica serotype Enteritidis strains. Epidemiol Infect 123:423–430

    Article  PubMed  CAS  Google Scholar 

  • Pan Z et al (2009) Identification of genetic and phenotypic differences associated with prevalent and non-prevalent S. enteritidis phage types: analysis of variation in amino acid transport. Microbiology 155:3200–3213

    Article  PubMed  CAS  Google Scholar 

  • Pang JC, Lin JS, Tsai CC, Tsen HY (2006) The presence of major world-wide clones for phage type 4 and 8 S. enterica serovar Enteritidis and the evaluation of their virulence levels by invasiveness assays in vitro and in vivo. FEMS Microbiol Lett 263:148–154

    Article  PubMed  CAS  Google Scholar 

  • Patrick ME et al (2004) S. enteritidis infections, US, 1985–1999. Emerg Infect Dis 10:1–7

    PubMed  Google Scholar 

  • Poppe C, Demczuk W, McFadden K, Johnson RP (1993) Virulence of S. enteritidis phagetypes 4, 8 and 13 and other Salmonella spp. for day-old chicks, hens and mice. Can J Vet Res 57:281–287

    PubMed  CAS  Google Scholar 

  • Rajashekara G, Munir S, Alexeyev MF, Halvorson DA, Wells CL, Nagaraja KV (2000) Pathogenic role of SEF14, SEF17, and SEF21 fimbriae in S. enterica serovar enteritidis infection of chickens. Appl Environ Microbiol 66:1759–1763

    Article  PubMed  CAS  Google Scholar 

  • Rotger R, Casadesus J (1999) The virulence plasmids of Salmonella. Int Microbiol 2:177–184

    PubMed  CAS  Google Scholar 

  • Rychlik I, Gregorova D, Hradecka H (2006) Distribution and function of plasmids in S. enterica. Vet Microbiol 112:1–10

    Article  PubMed  CAS  Google Scholar 

  • Rychlik I, Hradecka H, Malcova M (2008) S. enterica serovar Typhimurium typing by prophage-specific PCR. Microbiology 154:1384–1389

    Article  PubMed  CAS  Google Scholar 

  • Saeed AM, Walk ST, Arshad M, Whittam TS (2006) Clonal structure and variation in virulence of S. enteritidis isolated from mice, chickens, and humans. J AOAC Int 89:504–511

    PubMed  CAS  Google Scholar 

  • Santos AC et al (2010) Salmonella Typhimurium and S. enteritidis in England: costs to patients, their families, and primary and community health services of the NHS. Epidemiol Infect 139:742–753

    Google Scholar 

  • Schnabl KL, Field C, Clandinin MT (2009) Ganglioside composition of differentiated Caco-2 cells resembles human colostrum and neonatal rat intestine. Br J Nutr 101:694–700

    Article  PubMed  CAS  Google Scholar 

  • Schraidt O et al (2010) Topology and organization of the S. typhimurium type III secretion needle complex components. PLoS Pathog 6:e1000824

    Article  PubMed  Google Scholar 

  • Shah DH et al (2011) Cell invasion of poultry-associated S. enteritidis isolates is associated with pathogenicity, motility and secretion of type-three secretion system secreted proteins. Microbiology 157:1428–1445

    Google Scholar 

  • Sneath PH, Sokal RR (1973) Numeral taxonomy. W.H. Freeman and Company, San Francisco, pp 223–234

    Google Scholar 

  • Snow LC et al (2007) Survey of the prevalence of Salmonella species on commercial laying farms in the UK. Vet Rec 161:471–476

    Article  PubMed  CAS  Google Scholar 

  • Solano C, Sesma B, Alvarez M, Humphrey TJ, Thorns CJ, Gamazo C (1998) Discrimination of strains of S. enteritidis with differing levels of virulence by an in vitro glass adherence test. J Clin Microbiol 36:674–678

    PubMed  CAS  Google Scholar 

  • Solano C et al (2001) Virulent strains of S. enteritidis disrupt the epithelial barrier of Caco-2 and HEp-2 cells. Arch Microbiol 175:46–51

    Article  PubMed  CAS  Google Scholar 

  • Tena D, Gonzalez-Praetorius A, Bisquert J (2007) Urinary tract infection due to non-typhoidal Salmonella: report of 19 cases. J Infect 54:245–249

    Article  PubMed  Google Scholar 

  • Trafny EA, Kozlowska K, Szpakowska M (2006) A novel multiplex PCR assay for the detection of S. enterica serovar Enteritidis in human faeces. Lett Appl Microbiol 43:673–679

    Article  PubMed  CAS  Google Scholar 

  • Van Asten FJ, Hendriks HG, Koninkx JF, Van der Zeijst BA, Gaastra W (2000) Inactivation of the flagellin gene of S. enterica serotype enteritidis strongly reduces invasion into differentiated Caco-2 cells. FEMS Microbiol Lett 185:175–179

    Article  PubMed  Google Scholar 

  • Wallis TS, Galyov EE (2000) Molecular basis of Salmonella induced enteritis. Mol Microbiol 36:997–1005

    Article  PubMed  CAS  Google Scholar 

  • WHO (2008) http://www.who.int/gfn/activities/CDB_poster_Sept09.pdf

  • Yim L et al (2010) Differential phenotypic diversity among epidemic-spanning S. enterica serovar enteritidis isolates from humans or animals. Appl Environ Microbiol 76:6812–6820

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported in part by National Institute of Health, Department of Health and Human Services under the contract number NO1-AI-30055 and by the Agricultural Animal Health Program, College of Veterinary Medicine, Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra H. Shah.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, D.H., Zhou, X., Addwebi, T. et al. In vitro and in vivo pathogenicity of Salmonella enteritidis clinical strains isolated from North America. Arch Microbiol 193, 811–821 (2011). https://doi.org/10.1007/s00203-011-0719-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0719-4

Keywords

Navigation