Skip to main content
Log in

Inducible expression of choline sulfatase and its regulator BetR in Pseudomonas sp. ATCC19151

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas sp. strain ATCC19151 is a natural isolate from sewage with the ability to degrade detergents. Genes encoding potential choline sulfatase (betC), substrate-binding ABC transporter protein (betD), sulfate transporter (betE), and divergent putative transcriptional regulator (betR) were cloned and characterized from strain ATCC19151. In silico analysis revealed that (1) the BetC protein belongs to alkPPc superfamily and shares CXPXR sequence with the cysteine sulfatases of group I, (2) BetR belongs to the LysR family of transcriptional regulators, (3) BetD is part of the PBPb superfamily of periplasmic and membrane-associated proteins, and (4) BetE is a permease and contains STAS domain. Insertional mutagenesis and genetic complementation show that betC gene encodes a functional choline sulfatase. Analysis of the betC (P betC ) and betR (P betR ) promoters revealed that they are inducible. BetR activates betC and betR transcription in the presence of choline sulfate, whilst in the absence of choline sulfate, BetR represses its own transcription. It was further established that BetR directly binds to betCbetR intergenic region in vitro, with higher affinity in the presence of choline sulfate as cofactor. Transcription of betC and betR was not induced in the presence of high concentration of NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexeyev MF (1999) The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of Gram’s negative bacteria. BioTechniques 26:824–828

    PubMed  CAS  Google Scholar 

  • Aravind L, Koonin EV (2000) The STAS domain—a link between anion transporters and antisigma-factor antagonists. Curr Biol 10:53–55

    Article  Google Scholar 

  • Canovas D, Vargas C, Kneip S, Moron MJ, Ventosa A, Bremer E, Nieto JJ (2000) Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM. Microbiology 146:455–463

    PubMed  CAS  Google Scholar 

  • Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in procariotic membrane proteins: the dense alignment surface method. Prot Eng 10:673–676

    Article  CAS  Google Scholar 

  • Fitzgerald JW, Luschinski PC (1977) Further studies on the formation of choline sulfate by bacteria. Can J Microbiol 23:483–490

    Article  PubMed  CAS  Google Scholar 

  • Galvao TC, de Lorenzo V, Canovas D (2006) Uncoupling of choline-O-sulphate utilization from osmoprotection in Pseudomonas putida. Mol Microbiol 62:1643–1654

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci USA 91:306–310

    Article  PubMed  CAS  Google Scholar 

  • Hsu YC (1963) Detergent (sodium lauryl sulfate) splitting enzyme from bacteria. Nature 200:1091–1092

    Article  PubMed  CAS  Google Scholar 

  • Hsu YC (1965) Detergent-splitting enzyme from Pseudomonas. Nature 207:385–388

    Article  PubMed  CAS  Google Scholar 

  • Ikawa M, Chakravarti A, Taylor RF (1972) Occurrence of choline in Lactobacillus plantarum. Can J Microbiol 18:1241–1245

    Article  PubMed  CAS  Google Scholar 

  • Jovcic B, Venturi V, Davison J, Topisirovic L, Kojic M (2010) Regulation of the sdsA alkyl sulfatase of Pseudomonas sp. ATCC19151 and its involvement in degradation of anionic surfactants. J Appl Microbiol 109:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Kojic M, Jovcic B, Vindigni A, Odreman F, Venturi V (2005) Novel target genes of PsrA transcriptional regulator of Pseudomonas aeruginosa. FEMS Microbiol Lett 246:175–181

    Article  PubMed  CAS  Google Scholar 

  • Lamark T, Kaasen I, Eshoo MW, Falkenberg P, McDougall J, Storm AR (1991) DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine pathway of Escherichia coli. Mol Microbiol 5:1049–1064

    Article  PubMed  CAS  Google Scholar 

  • Lucas JJ, Burchiel SW, Segel IH (1972) Choline sulfatase of Pseudomonas aeruginosa. Arch Biochem Biophys 153:664–672

    Article  PubMed  CAS  Google Scholar 

  • Maddocks SE, Oyston PCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–3623

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136

    Article  PubMed  CAS  Google Scholar 

  • Osteras M, Boncompagni E, Vincent N, Poggi MC, Le Rudulier D (1998) Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfatase is metabolized into glycine betaine. Proc Natl Acad Sci USA 95:11394–11399

    Article  PubMed  CAS  Google Scholar 

  • Pocard JA, Vincent N, Boncompagni E, Smith LT, Poggi MC, Le Rudulier D (1997) Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34. Microbiology 143:1369–1379

    Article  PubMed  CAS  Google Scholar 

  • Smith AW, Iglewski BH (1989) Transformation of Pseudomonas aeruginosa by electroporation. Nucl Acid Res 17:10509

    Article  CAS  Google Scholar 

  • Spaink HP, Okker RJH, Wijffelmann CA, Pees E, Lugtenberg BJJ (1987) Promoter in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9:27–39

    Article  CAS  Google Scholar 

  • Spencer B, Hussey EC, Orsi BA, Scott JM (1968) Mechanism of choline-O-sulphate utilization in fungi. Biochem J 106:461–469

    PubMed  CAS  Google Scholar 

  • Stevens CM, Vohra P (1955) Occurrence of choline sulfate in Penicillium chrysogenum. J Am Chem Soc 77:4935–4936

    Article  CAS  Google Scholar 

  • Takebe I (1961) Isolation and characterization of a new enzyme choline sulfatase. J Biochem 50:245–255

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Ministry of Science and Technological Development, Republic of Serbia, Project No. 143036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Kojic.

Additional information

Communicated by Jorge Membrillo-Hernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovcic, B., Venturi, V., Topisirovic, L. et al. Inducible expression of choline sulfatase and its regulator BetR in Pseudomonas sp. ATCC19151. Arch Microbiol 193, 399–405 (2011). https://doi.org/10.1007/s00203-011-0685-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0685-x

Keywords

Navigation