Skip to main content
Log in

Size distribution and buoyant density of Burkholderia pseudomallei

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The size and density of microbial cells determine the time that pathogens can remain airborne and thus, their potential to infect by the respiratory route. We determined the density and size distribution of Burkholderia pseudomallei cells in comparison with other Burkholderia species, including B. mallei and B. thailandensis, all prepared and analyzed under similar conditions. The observed size distribution and densities of several bacterial strains indicates that aerosolized particles consisting of one or of a few B. pseudomallei cells should be efficiently retained in the lungs, highlighting the risk of transmission of melioidosis by the respiratory route when the pathogen is present in fluids from infected patients or aerosolized from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Baker RM, Singleton FL, Hood MA (1983) Effects of nutrient deprivation on Vibrio cholerae. Appl Environ Microbiol 46:930–940

    CAS  PubMed  Google Scholar 

  • Baldwin WW, Sheu MJ, Bankston PW, Woldringh CL (1988) Changes in buoyant density and cell size of Escherichia coli in response to osmotic shocks. J Bacteriol 170:452–455

    CAS  PubMed  Google Scholar 

  • Baron PA, Willeke K (2001) Aerosol measurement. Principles techniques and applications. Wiley, New York

    Google Scholar 

  • Beijerinck MW (1888) Cultur des Bacillus radicicola aus den Knöllchen. Bot Ztg 46:740–750

    Google Scholar 

  • Beji A, Mergaert J, Gavini F, Izard D, Kersters K, Leclerc H, De Ley J (1988) Subjective synonymy of Erwinia herbicola, Erwinia milletiae, and Enterobacter agglomerans and redefinition of the taxon by genotypic and phenotypic data. Int J Syst Bacteriol 38:77–88

    Article  CAS  Google Scholar 

  • Carrera M, Kesavan J, Zandomeni R, Sagripanti J-L (2005) Method to determine the number of bacterial spores within aerosol particles. Aerosol Sci Technol 39:1–6

    Article  Google Scholar 

  • Carrera M, Zandomeni RO, Fitzgibbon J, Sagripanti JL (2007) Difference between the spore sizes of Bacillus anthracis and other Bacillus species. J Appl Microbiol 102:303–312

    Article  CAS  PubMed  Google Scholar 

  • Carrera M, Zandomeni RO, Sagripanti JL (2008) Wet and dry density of Bacillus anthracis and other Bacillus species. J Appl Microbiol 105:68–77

    Article  CAS  PubMed  Google Scholar 

  • Cazemier AE, Wagenaars SF, Ter Steeg PF (2001) Effect of sporulation and recovery medium on the heat resistance and amount of injury of spores from spoilage bacilli. J Appl Microbiol 90:761–770

    Article  CAS  PubMed  Google Scholar 

  • Clegg CD, van Elsas JD, Anderson JM, Lappin-Scott HM (1996) Survival of parental and genetically modified derivatives of a soil isolated Pseudomonas fluorescens under nutrient-limiting conditions. J Appl Bacteriol 81:19–26

    Google Scholar 

  • Ewing WH, Fife MA (1972) Enterobacter agglomerans (Beijerinck) comb. nov. (the Herbicola-Lathyri Bacteria). Int J Syst Bacteriol 22:4–11

    Article  Google Scholar 

  • Friedlander SK (2000) Smoke, dust, and haze. Fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J (1989) Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345

    Article  Google Scholar 

  • George SE, Nelson GM, Kohan MJ, Brooks LR, Boyd C (1999) Colonization and clearance of environmental microbial agents upon intranasal exposure of strain C3H/HeJ mice. J Toxicol Environ Health. Part A 56:419–431

    Article  CAS  PubMed  Google Scholar 

  • Gilligan PH, Whittier S (1999) Burkholderia, Stenotrophomonas, Ralstonia, Brevundimonas, Comamonas, and Acidovorax. In: Murray PRBE, Pfaller MA, Tenover FC, Yolken RH (eds) Manual of clinical microbiology, 7th edn. American Society for Microbiology, Washington

    Google Scholar 

  • Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG (2003) Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41:2068–2079

    Article  CAS  PubMed  Google Scholar 

  • Hinds J (1999) Aerosol technology: Properties, behavior and measurement of airborne particles. Wiley, New York

    Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Howe C, Sampath A, Spotnitz M (1971) The pseudomallei group: a review. J Infect Dis 124:598–606

    CAS  PubMed  Google Scholar 

  • Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004) Attogram detection using nanoelectromechanical oscillators. J Appl Phys 95:3694–3703

    Article  CAS  Google Scholar 

  • Inglis TJ, Garrow SC, Adams C, Henderson M, Mayo M, Currie BJ (1999) Acute melioidosis outbreak in Western Australia. Epidemiol Infect 123:437–443

    Article  CAS  PubMed  Google Scholar 

  • Kesavan J, Bottiger JR, McFarland AR (2008) Bioaerosol concentrator performance: comparative tests with viable and with solid and liquid nonviable particles. J Appl Microbiol 104:285–295

    CAS  PubMed  Google Scholar 

  • Koch AL (1984) Shrinkage of growing Escherichia coli cells by osmotic challenge. J Bacteriol 159:919–924

    CAS  PubMed  Google Scholar 

  • Levy A, Merritt AJ, Aravena-Roman M, Hodge MM, Inglis TJJ (2008) Expanded range of Burkholderia species in Australia. Am J Trop Med Hyg 78:599–604

    CAS  PubMed  Google Scholar 

  • Lipmann M (1977) Regional deposition of particles in the human respiratory tract. In: Lee DHK, Falk HL, Murphy SO, Geiger SR (eds) Handbook of physiology, reaction to environmental agents. American Physiological Society, Bethesda

    Google Scholar 

  • Maegraith BG, Leithead CS (1964) Melioidosis: a case report. Lancet 283:862–863

    Article  Google Scholar 

  • Makinoshima H, Aizawa S-I, Hayashi H, Miki T, Nishimura A, Ishihama A (2003) Growth phase-coupled alterations in cell structure and function of Escherichia coli. J Bacteriol 185:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Nierman WC et al (2004) Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101:14246–14251

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Nayak BB, Kogure K (2003) Density-dependent sorting of physiologically different cells of Vibrio parahaemolyticus. Appl Environ Microbiol 69:3569–3572

    Article  CAS  PubMed  Google Scholar 

  • Pitt TL (1995) Pseudomonas, Burkholderia and related genera. In: Haussler WJ, Sussman M (eds) Topley and Wilson’s microbiology and microbial infections. Arnold, London, pp 1109–1138

    Google Scholar 

  • Robertson J, Levy A, Sagripanti J-L, Inglis TJJ (2010) The survival of Burkholderia pseudomallei in liquid media. Am J Trop Med Hyg 82:88–94

    Article  PubMed  Google Scholar 

  • Rolim DB, Rocha MF, Brilhante RS, Cordeiro RA, Leitao NP Jr, Inglis TJ, Sidrim JJ (2009) Environmental isolates of Burkholderia pseudomallei in Ceará State, northeastern Brazil. Appl Environ Microbiol 75:1215–1218

    Article  CAS  PubMed  Google Scholar 

  • Sundaram S, Auriemma M, Howard G Jr, Brandwein H, Leo F (1999) Application of membrane filtration for removal of diminutive bioburden organisms in pharmaceutical products and processes. PDA J Pharm Sci Technol 53:186–201

    CAS  PubMed  Google Scholar 

  • Tiangpitayakorn C, Songsivilai S, Piyasangthong N, Dharakul T (1997) Speed of detection of Burkholderia pseudomallei in blood cultures and its correlation with the clinical outcome. Am J Trop Med Hyg 57:96–99

    CAS  PubMed  Google Scholar 

  • Tisa LS, Koshikawa T, Gerhardt P (1982) Wet and dry bacterial spore densities determined by buoyant sedimentation. Appl Environ Microbiol 43:1307–1310

    CAS  PubMed  Google Scholar 

  • Walker SL (2005) The role of nutrient presence on the adhesion kinetics of Burkholderia cepacia G4 g and ENV435 g. Colloids Surf B Biointerfaces 45:181–188

    Article  CAS  PubMed  Google Scholar 

  • Walsh AL, Smith MD, Wuthiekanun V, Suputtamongkol Y, Chaowagul W, Dance DA, Angus B, White NJ (1995) Prognostic significance of quantitative bacteremia in septicemic melioidosis. Clin Infect Dis 21:1498–1500

    CAS  PubMed  Google Scholar 

  • Watson SP, Clements MO, Foster SJ (1998) Characterization of the starvation-survival response of Staphylococcus aureus. J Bacteriol 180:1750–1758

    CAS  PubMed  Google Scholar 

  • Wetmore PW, Gochenour WS Jr (1956) Comparative studies of the genus Malleomyces and selected Pseudomonas species I: morphological and cultural characteristics. J Bacteriol 72:79–89

    Article  CAS  PubMed  Google Scholar 

  • Woldringh CL, Binnerts JS, Mans A (1981) Variation in Escherichia coli buoyant density measured in Percoll gradients. J Bacteriol 148:58–63

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The expertise in electron microscopy analysis provided by Ray Meades from the Biomedical Imaging Core Facility, University of Pennsylvania is highly appreciated. We would like to thank Pierre Filion and the Electron Microscopy Unit at PathWest Laboratory Medicine WA for the use of reagents and equipment. We acknowledge the technical assistance provided on BSL-3 operations by Ms. Leslie I. Williams (Edgewood Chemical Biological Center, Maryland). This work was supported by the U.S. Department of Defense Chemical and Biological Defense program administered by the Defense Threat Reduction Agency and by In-House Laboratory Independent Research (ILIR) funds from the Research and Technology Directorate, Edgewood Chemical Biological Center, Research Development and Engineering Command, US Army.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose-Luis Sagripanti.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagripanti, JL., Carrera, M., Robertson, J. et al. Size distribution and buoyant density of Burkholderia pseudomallei . Arch Microbiol 193, 69–75 (2011). https://doi.org/10.1007/s00203-010-0649-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0649-6

Keywords

Navigation