Skip to main content
Log in

Starvation/stationary-phase survival of Rhodococcus erythropolis SQ1: a physiological and genetic analysis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The adaptation of Rhodocccus erythropolis SQ1 to energy and carbon starvation was investigated in terms of both the capacity to survive starvation and the contribution of a nutrient-induced stationary phase to cross-protection to other types of environmental stress. It was found that R. erythropolis SQ1 survives for at least 43 days in LB and distilled water, and 65 days in chemically defined medium (CDM) containing high (1%) or low (0.1%) glucose. Furthermore, early stationary-phase R. erythropolis SQ1 grown in CDM 0.1% exhibited enhanced resistance to heat and oxidative stress compared with exponential-phase cells. A second objective of this study was to identify genetic elements involved in starvation/stationary-phase survival. A mutant bank of R. erythropolis SQ1 generated by random transposon insertion mutagenesis was screened; four mutants lost culturability when grown in CDM 1%. No drop in culturability was observed when these mutants were grown in CDM 0.1%. The DNA flanking transposon insertion could be recovered from three mutants. Transposon insertions were found in uvrB (UvrB, part of the DNA excision repair mechanism), between a putative guaB gene and another guaB-like gene, and between a gene encoding a putative phosphoglycerate mutase and putative thioredoxin/cytochrome c biogenesis genes. This represents a first study of the starvation/stationary-phase survival response of Rhodococcus, an organism of immense significance in environmental bioremediation and a number of industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389

    Article  CAS  PubMed  Google Scholar 

  • Arikan E, Kulkami MS, Thomas DC, Sancar A (1986) Sequences of the E. coli uvrB gene and protein. Nucleic Acids Res 14:2637

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM (1996) Handbook of microbiological media. CRC Press, Boca Raton

    Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731

    Article  CAS  PubMed  Google Scholar 

  • Bridges BA (1998) The role of DNA damage in stationary phase (‘adaptive’) mutation. Mutat Res DNA Repair 408:1–9

    Article  CAS  PubMed  Google Scholar 

  • Briglia M, Nurmiaho-Lassila EL, Vallini G, Salkinoja-Salonen M (1990) The survival of the pentachlorophenol-degrading Rhodococcus chlorophenolicus PCP-1 and Flavobacterium sp. in natural soil. Biodegradation 1:273–281

    Article  Google Scholar 

  • Caro A, Boltes K, Leton P, García-Calvo E (2007) Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem Eng J 35:191–197

    Article  CAS  Google Scholar 

  • Clements MO, Watson SP, Poole RK, Foster SJ (1999) CtaA of Staphylococcus aureus is required for starvation survival, recovery, and cytochrome biosynthesis. J Bacteriol 181:501–507

    CAS  PubMed  Google Scholar 

  • Darwin KH (2003) The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963–1966

    Article  CAS  PubMed  Google Scholar 

  • Darwin KH, Nathan CF (2005) Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis. Infect Immun 73:4581–4587

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726

    Article  PubMed  Google Scholar 

  • de Carvalho CCCR, Cruz A, Pons MN, Pinheiro HM, Cabral JMS, da Fonseca MMR, Fernandes P, Ferreira BS (2004) Mycobacterium sp., Rhodococcus erythropolis and Pseudomonas putida behaviour in the presence of organic solvents. Microsc Res Tech 64:215–222

    Article  PubMed  Google Scholar 

  • Di Mattia E, Grego S, Cacciari I (2002) Eco-physiological characterization of soil bacterial populations in different states of growth. Microb Ecol 43:34–43

    CAS  PubMed  Google Scholar 

  • DOGAN (2010) Database of the genomes analyzed at NITE (National Institute of Technology and Evaluation), Japan. http://www.bio.nite.go.jp/dogan/Top

  • Eccleston M, Kelly D (1973) Inhibition by l-threonine of aspartokinase as a cause of threonine toxicity to Methylococcus capsulatus. J Gen Microbiol 75:223–226

    CAS  Google Scholar 

  • Emelyanova EV, Reshetilov AN (2002) Rhodococcus erythropolis as the receptor of cell-based sensor for 2,4-dinitrophenol detection: effect of ‘co-oxidation’. Process Biochem 37:683–692

    Article  CAS  Google Scholar 

  • Eymann C, Homuth G, Scharf C, Hecker M (2002) Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 184:2500–2520

    Article  CAS  PubMed  Google Scholar 

  • Fabianek RA, Hennecke H, Thony-Meyer L (1998) The active-site cysteines of the periplasmic thioredoxin-like protein Ccmg of Escherichia coli are important but not essential for cytochrome c maturation in vivo. J Bacteriol 180:1947–1950

    CAS  PubMed  Google Scholar 

  • Fanget NVJ (2008) Starvation/stationary phase survival of Rhodococcus erythropolis SQ1: a physiological and genetic analysis. PhD, Napier University

  • Fernandes PJ, Powell JAC, Archer JAC (2001) Construction of Rhodococcus random mutagenesis libraries using Tn5 transposition complexes. Microbiology 147:2529–2536

    CAS  PubMed  Google Scholar 

  • Ferreira A, O’Byrne CP, Boor KJ (2001) Role of σB in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 67:4454–4457

    Article  CAS  PubMed  Google Scholar 

  • Franchini AG, Egli T (2006) Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152:2111

    Article  CAS  PubMed  Google Scholar 

  • Giard J, Hartke A, Flahaut S, Boutibonnes P, Auffray Y (1997) Glucose starvation response in Enterococcus faecalis JH2-2: survival and protein analysis. Res Microbiol 148:27–35

    Article  CAS  PubMed  Google Scholar 

  • Gil R, Silva FJ, Peretó J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518–537

    Article  CAS  PubMed  Google Scholar 

  • Givskov M, Eberl L, Moller S, Poulsen LK, Molin S (1994) Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content. J Bacteriol 176:7–14

    CAS  PubMed  Google Scholar 

  • Goodfellow M (1989) Rhodococcus. In: Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2362–2371

  • Goodhew CF, Wilson IB, Hunter DJ, Pettigrew GW (1990) The cellular location and specificity of bacterial cytochrome c peroxidases. Biochem J 271:707–712

    CAS  PubMed  Google Scholar 

  • Goodhue CT, Rosazza JP, Peruzzotti GP (1986) Methods for transformation of organic compounds. In: Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC, pp 97–121

  • Goryshin IY, Miller JA, Kil YV, Lanzov VA, Reznikoff WS (1998) Tn5/IS50 target recognition. Proc Natl Acad Sci USA 95:10716

    Article  CAS  PubMed  Google Scholar 

  • Goswami M, Shivaraman N, Singh RP (2005) Microbial metabolism of 2-chlorophenol, phenol and r-cresol by Rhodococcus erythropolis M1 in co-culture with Pseudomonas fluorescens P1. Microbiol Res 160:101–109

    Article  CAS  PubMed  Google Scholar 

  • Goulding CW (2003) Gram-positive DsbE proteins function differently from gram-negative DsbE homologs: a structure to function analysis of DsbE from Mycobacterium tuberculosis. J Biol Chem 279:3516–3524

    Article  PubMed  Google Scholar 

  • Gupta S, Pandit SB, Srinivasan N, Chatterji D (2002) Proteomics analysis of carbon-starved Mycobacterium smegmatis: induction of Dps-like protein. Protein Eng 15:503–511

    Article  CAS  PubMed  Google Scholar 

  • Heald SC, Brandao PF, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie Van Leeuwenhoek 80:169–183

    Article  CAS  PubMed  Google Scholar 

  • Hernandez M, Mohn W, Martinez E, Rost E, Alvarez A, Alvarez H (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9:600

    Article  PubMed  Google Scholar 

  • Herron PR, Hughes G, Chandra G, Fielding S, Dyson PJ (2004) Transposon Express, a software application to report the identity of insertions obtained by comprehensive transposon mutagenesis of sequenced genomes: analysis of the preference for in vitro Tn5 transposition into GC-rich DNA. Nucleic Acids Res 32:e113

    Article  PubMed  Google Scholar 

  • Hidalgo A, Lopategi M, Prieto J, Serra JL (2002) Formaldehyde removal in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol 58:260–264

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Coates AR (1999) Transcription of two sigma 70 homologue genes, siga and sigb, in stationary-phase Mycobacterium tuberculosis. J Bacteriol 181:469–476

    CAS  PubMed  Google Scholar 

  • Ichihara A, Greenberg DM (1957) Further studies on the pathway of serine formation from carbohydrate. J Biol Chem 224:331–340

    CAS  PubMed  Google Scholar 

  • JCVI (2010) JCVI (J. Craig Venter Institute) Human Microbiome Project. http://hmp.jcvi.org/index.shtml

  • Jenkins DE, Schultz JE, Matin A (1988) Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol 170:3910–3914

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354

    Article  CAS  PubMed  Google Scholar 

  • Kitova AE, Kuvichkina TN, Il’yasov PV, Arinbasarova AY, Reshetilov AN (2002) A reactor-type biosensor based on Rhodococcus erythropolis HL PM-1 cells for detecting 2,4-dinitrophenol. Appl Biochem Microbiol 38:500–505

    Article  CAS  Google Scholar 

  • Kitova AE, Kuvichkina TN, Arinbasarova AY, Reshetilov AN (2004) Degradation of 2,4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1. Appl Biochem Microbiol 40:258–261

    Article  CAS  Google Scholar 

  • Kivisaar M (2003) Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 5:814–827

    Article  CAS  PubMed  Google Scholar 

  • Kjelleberg S (1993) Starvation in bacteria. Springer, New York

    Google Scholar 

  • Kjelleberg S, Albertson N, Flärdh K, Holmquist L, Jouper-Jaan Å, Marouga R, Östling J, Svenblad B, Weichart D (1993) How do non-differentiating bacteria adapt to starvation? Antonie Van Leeuwenhoek 63:333–341

    Article  CAS  PubMed  Google Scholar 

  • Kochkina GA, Ivanushkina NE, Karasev SG, Gavrish EY, Gurina LV, Evtushenko LI, Spirina EV, Vorob’eva EA, Gilichinskii DA, Ozerskaya SM (2001) Survival of micromycetes and actinobacteria under conditions of long-term natural cryopreservation. Microbiology 70:356–364

    Article  CAS  Google Scholar 

  • Kurland CG, Dong H (1996) Bacterial growth inhibition by overproduction of protein. Mol Microbiol 21:1–4

    Article  CAS  PubMed  Google Scholar 

  • Lamb DH, Bott KF (1979) Inhibition of Bacillus subtilis growth and sporulation by threonine. J Bacteriol 137:213–220

    CAS  PubMed  Google Scholar 

  • Mangan MW, Meijer WG (2001) Random insertion mutagenesis of the intracellular pathogen Rhodococcus equi using transposomes. FEMS Microbiol Lett 205:243–246

    Article  CAS  PubMed  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D et al (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci 103:15582

    Article  PubMed  Google Scholar 

  • Morita RY (1993) Bioavailability of energy and the starvation state. In: Kjelleberg S (ed) Starvation in Bacteria. Plenum Publishing Corporation, New York, pp 1–23

    Google Scholar 

  • Naito M, Kawamoto T, Fujino K, Kobayashi M, Maruhashi K, Tanaka A (2001) Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells. Appl Microbiol Biotechnol 55:374–378

    Article  CAS  PubMed  Google Scholar 

  • Nyka W (1974) Studies on the effect of starvation on mycobacteria. Infect Immun 9:843–850

    CAS  PubMed  Google Scholar 

  • Nyström T (1999) Starvation, cessation of growth and bacterial aging. Curr Opin Microbiol 2:214–219

    Article  PubMed  Google Scholar 

  • Nyström T, Olsson RM, Kjelleberg S (1992) Survival, stress resistance, and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl Environ Microbiol 58:55

    PubMed  Google Scholar 

  • O’Mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O’Reilly C (2005) Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis strains AJ270 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie Van Leeuwenhoek 87:221–232

    Article  PubMed  Google Scholar 

  • Overbeeke PLA, Schenkels P, Secundo F, Jongejan JA (2003) Enzymatic: biocatalytic synthesis of cyclopropanol from cyclopropyl methyl ketone using whole cells of Rhodococcus erythropolis. J Mol Catal B 21:51–53

    Article  Google Scholar 

  • Paje MLF, Neilan BA, Couperwhite L (1997) A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology 143:2975–2981

    Article  CAS  PubMed  Google Scholar 

  • Patel RN, Chu L, Mueller R (2003) Asymmetry: diastereoselective microbial reduction of (S)-[3-chloro-2-oxo-1-(phenylmethyl)propyl]carbamic acid, 1,1-dimethylethyl ester. Tetrahedron 14:3105–3109

    Article  CAS  Google Scholar 

  • Peressutti SR, Alvarez HM, Pucci OH (2003) Dynamics of hydrocarbon-degrading bacteriocenosis of an experimental oil pollution in Patagonian soil. Int Biodeterior Biodegradation 52:21–30

    Article  CAS  Google Scholar 

  • Pirog TP, Shevchuk TA, Voloshina IN, Gregirchak NN (2005) Use of claydite-immobilized oil-oxidizing microbial cells for purification of water from oil. Appl Biochem Microbiol 41:51–55

    Article  CAS  Google Scholar 

  • Pizzul L, Castillo MD, Stenström J (2006) Characterization of selected actinomycetes degrading polyaromatic hydrocarbons in liquid culture and spiked soil. World J Microbiol Biotechnol 22:745–752

    Article  CAS  Google Scholar 

  • Price MN, Alm EJ, Arkin AP (2006) The histidine operon is ancient. J Mol Evol 62:807–808

    Article  CAS  PubMed  Google Scholar 

  • Prieto MB, Hidalgo A, Rodríguez-Fernández C, Serra JL, Llama MJ (2002a) Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier. Appl Microbiol Biotechnol 58:853–860

    Article  CAS  PubMed  Google Scholar 

  • Prieto MB, Hidalgo A, Serra JL, Llama MJ (2002b) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite in a packed-bed reactor. J Biotechnol 97:1–11

    Article  CAS  Google Scholar 

  • Quan S, Dabbs ER (1993) Nocardioform arsenic resistance plasmid characterization and improved Rhodococcus cloning vectors. Plasmid 29:74–79

    Article  CAS  PubMed  Google Scholar 

  • Sallam KI, Tamura N, Imoto N, Tamura T (2010) New vector system for random, single-step integration of multiple copies of DNA into the Rhodococcus genome. Appl Environ Microbiol 76:2531–2539

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1987) Molecular cloning: a laboratory manual, New edn. Cold Spring Harbor Laboratory Press, USA

    Google Scholar 

  • Sanin SL (2003) Effect of starvation on resuscitation and the surface characteristics of bacteria. J Environ Sci Health A Tox Hazard Subst Environ Eng 38:1517

    PubMed  Google Scholar 

  • Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    Article  CAS  PubMed  Google Scholar 

  • Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  CAS  PubMed  Google Scholar 

  • Seymour RL, Mishra PV, Khan MA, Spector MP (1996) Essential roles of core starvation-stress response loci in carbon-starvation-inducible cross-resistance and hydrogen peroxide-inducible adaptive resistance to oxidative challenge in Salmonella typhimurium. Mol Microbiol 20:497–505

    Article  CAS  PubMed  Google Scholar 

  • Shkidchenko AN, Kobzev EN, Petrikevich SB, Chugunov VA, Kholodenko VP, Boronin AM (2004) Biodegradation of black oil by microflora of the Bay of Biscay and biopreparations. Process Biochem 39:1671–1676

    Article  CAS  Google Scholar 

  • Shleeva MO, Bagramyan K, Telkov MV, Mukamolova GV, Young M, Kell DB, Kaprelyants AS (2002) Formation and resuscitation of ‘non-culturable’ cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148:1581–1591

    CAS  PubMed  Google Scholar 

  • Siegele DA, Imlay KR, Imlay JA (1996) The stationary-phase-exit defect of cydC (surB) mutants is due to the lack of a functional terminal cytochrome oxidase. J Bacteriol 178:6091

    CAS  PubMed  Google Scholar 

  • Smeulders MJ, Keer J, Speight RA, Williams HD (1999) Adaptation of Mycobacterium smegmatis to stationary phase. J Bacteriol 181:270–283

    CAS  PubMed  Google Scholar 

  • Smeulders MJ, Keer J, Gray K, Williams H (2004) S-Nitrosoglutathione cytotoxicity to and its use to isolate stationary phase survival mutants. FEMS Microbiol Lett 239:221–228

    Article  CAS  PubMed  Google Scholar 

  • Stratton HM, Seviour RJ, Soddell JA (1993) Effect of culture conditions on cell surface hydrophobicity of nocardioforms. Actinomycetes 4:41–46

    Google Scholar 

  • Tanaka Y, Yoshikawa O, Maruhashi K, Kurane R (2002) The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate. Arch Microbiol 178:351–357

    Article  CAS  PubMed  Google Scholar 

  • Tark M, Tover A, Koorits L, Tegova R, Kivisaar M (2008) Dual role of NER in mutagenesis in Pseudomonas putida. DNA Repair 7:20–30

    Article  CAS  PubMed  Google Scholar 

  • Treadway SL, Yanagimachi KS, Lankenau E, Lessard PA, Stephanopoulos G, Sinskey AJ (1999) Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl Microbiol Biotechnol 51:786–793

    Article  CAS  PubMed  Google Scholar 

  • Uhde C, Schmidt R, Jording D, Selbitschka W, Puhler A (1997) Stationary-phase mutants of Sinorhizobium meliloti are impaired in stationary-phase survival or in recovery to logarithmic growth. J Bacteriol 179:6432–6440

    CAS  PubMed  Google Scholar 

  • van der Werf MJ, Swarts HJ, de Bont JA (1999a) Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Microbiol 65:2092–2102

    PubMed  Google Scholar 

  • van der Werf MJ, Orru RVA, Overkamp KM, Swarts HJ, Osprian I, Steinreiber A, de Bont JAM, Faber K (1999b) Substrate specificity and stereospecificity of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14; an enzyme showing sequential and enantioconvergent substrate conversion. Appl Microbiol Biotechnol 52:380–385

    Article  Google Scholar 

  • Veselý M, Patek M, Nešvera J, Čejková A, Masak J, Jirkŭ V (2003) Host-vector system for phenol-degrading Rhodococcus erythropolis based on Corynebacterium plasmids. Appl Microbiol Biotechnol 61:523–527

    PubMed  Google Scholar 

  • Walsh DA, Sallach HJ (1966) Comparative studies on the pathways for serine biosynthesis in animal tissues. J Biol Chem 241:4068–4076

    CAS  PubMed  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29

    Article  CAS  PubMed  Google Scholar 

  • Watson SP, Antonio M, Foster SJ (1998a) Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery. Microbiology 144:3159

    Article  CAS  PubMed  Google Scholar 

  • Watson SP, Clements MO, Foster SJ (1998b) Characterization of the starvation-survival response of Staphylococcus aureus. J Bacteriol 180:1750

    CAS  PubMed  Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng J, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk H, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    Article  CAS  PubMed  Google Scholar 

  • Wellcome Sanger Institute (2006) Rhodococcus equi—Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/resources/downloads/bacteria/Rhodococcus-equi.html

  • Yagafarova GG, Safarov AK, Il’ina EG, Yagafarov IR, Barakhnina VB, Sukharevich ME (2002) Effect of shale kerogen oxidation products on biodegradation of oil and oil products in soil and water. Appl Biochem Microbiol 38:441–444

    Article  CAS  Google Scholar 

  • Zeller T, Klug G (2006) Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93:259–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank S. Dunbar for the technical support provided and acknowledge the financial support provided by the award of a PhD studentship by Edinburgh Napier University to NVJF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Foley.

Additional information

Communicated by Jan Roelof van der Meer.

The GenBank/EMBL/DDBJ accession numbers for the sequences described in this paper are AM941039–AM941044.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1357 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanget, N.V.J., Foley, S. Starvation/stationary-phase survival of Rhodococcus erythropolis SQ1: a physiological and genetic analysis. Arch Microbiol 193, 1–13 (2011). https://doi.org/10.1007/s00203-010-0638-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0638-9

Keywords

Navigation