Skip to main content

Advertisement

Log in

The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp.

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The aim of the work is to investigate the effect of marine bacterial culture supernatants on biofilm formation of Vibrio spp., a major menace in aquaculture industries. Vibrio spp. biofilm cause life-threatening infections in humans and animals. Forty-three marine bacterial culture supernatants were screened against the hydrophobicity index, initial attachment and biofilm formation in Vibrio spp. Twelve culture supernatants showed antibiofilm activity. The bacterial culture supernatants S8-07 (Bacillus pumilus) and S6-01 (B. indicus) inhibited the initial attachment, biofilm formation and dispersed the mature biofilm at 5% v/v concentration without inhibiting the growth. Analysis by light microscopy and confocal laser scanning microscopy showed that the architecture of the biofilm was destroyed by bacterial supernatants when compared to the control. The bacterial supernatants also reduce the surface hydrophobicity of Vibrio spp. which is one of the important requirements for biofilm formation. Further characterization of antibiofilm activity in S8-07 culture supernatant confirmed that it is an enzymatic activity and the size is more than 10 kDa and in S6-01, it is a heat-stable, non-protein compound. Furthermore, both the supernatants failed to show any biosurfactant activity. The culture supernatants of S8-07 and S6-01 with promising antibiofilm property have potential for application in medicine and marine aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Annuk H, Hirmo S, Turi E, Mikelsaar M, Arak E, Wadstrom T (1999) Effect on cell surface hydrophobicity and susceptibility of Helicobacter pylori to medicinal plant extracts. FEMS Microbiol Lett 172:41–45

    Article  CAS  PubMed  Google Scholar 

  • Bomchil N, Watnick P, Kolter R (2003) Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J Bacteriol 185:1384–1390

    Article  CAS  PubMed  Google Scholar 

  • Brooun A, Liu S, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640–646

    Article  CAS  PubMed  Google Scholar 

  • Brown MR, Collier PJ, Gilbert P (1990) Influence of growth rate on susceptibility to antimicrobial agents: modification of the cell envelope and batch and continuous culture studies. Antimicrob Agents Chemother 34:1623–1628

    CAS  PubMed  Google Scholar 

  • Cai S, Simionato MR, Mayer MP, Novo NF, Zelante F (1994) Effects of subinhibitory concentrations of chemical agents on hydrophobicity and in vitro adherence of Streptococcus mutans and Streptococcus sanguis. Caries Res 28:335–341

    Article  CAS  PubMed  Google Scholar 

  • Cerca N, Martins S, Pier GB, Oliveira R, Azeredo J (2005) The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm. Res Microbiol 156:650–655

    Article  CAS  PubMed  Google Scholar 

  • Chao G et al. (2010) Distribution of genes encoding four pathogenicity islands (VPaIs), T6SS, biofilm, and type i pilus in food and clinical strains of Vibrio parahaemolyticus in China. Foodborne Pathog Dis. doi:10.1089/fpd.2009.0441

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P (2006) Quorum sensing-disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Appl Environ Microbiol 72:6419–6423

    Article  CAS  PubMed  Google Scholar 

  • Dewanti R, Wong AC (1995) Influence of culture conditions on biofilm formation by Escherichia coli O157:H7. Int J Food Microbiol 26:147–164

    Article  CAS  PubMed  Google Scholar 

  • Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55:1160–1182

    Article  CAS  PubMed  Google Scholar 

  • Faruque SM et al (2006) Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci USA 103:6350–6355

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H (2001) Evaluation of the anti-biofilm effect of a new anti-bacterial silver citrate/lecithin coating in an in vitro experimental system using a modified Robbins device. Kansenshogaku Zasshi 75:678–685

    CAS  PubMed  Google Scholar 

  • Hawser S (1996) Adhesion of different Candida spp. to plastic: XTT formazan determinations. J Med Vet Mycol 34:407–410

    Article  CAS  PubMed  Google Scholar 

  • Hell E, Giske CG, Nelson A, Romling U, Marchini G (2010) Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol 50:211–215

    Article  CAS  PubMed  Google Scholar 

  • Johansson EM et al (2008) Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol 15:1249–1257

    Article  CAS  PubMed  Google Scholar 

  • Joseph LA, Wright AC (2004) Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J Bacteriol 186:889–893

    Article  CAS  PubMed  Google Scholar 

  • Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD (2000) Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res 53:621–631

    Article  CAS  PubMed  Google Scholar 

  • Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149:353–362

    Article  CAS  PubMed  Google Scholar 

  • Nithya C, Pandian SK (2009) Isolation of heterotrophic bacteria from Palk Bay sediments showing heavy metal tolerance and antibiotic production. Microbiol Res. doi:10.1016/j.micres.2009.10.004

  • Nithya C, Aravindraja C, Pandian SK (2010) Bacillus pumilus of Palk Bay origin inhibits quorum sensing mediated virulence factors in Gram negative bacteria. Res Microbiol 161:293–304

    Article  CAS  PubMed  Google Scholar 

  • Nithyanand P, Pandian SK (2009) Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from the Gulf of Mannar. FEMS Microbiol Ecol 69:384–394

    Article  CAS  PubMed  Google Scholar 

  • Nithyanand P, Thenmozhi R, Rathna J, Pandian SK (2009) Inhibition of Streptococcus pyogenes biofilm formation by coral-associated actinomycetes. Curr Microbiol 60:454–460

    Article  PubMed  Google Scholar 

  • Nostro A, Cannatelli MA, Crisafi G, Musolino AD, Procopio F, Alonzo V (2004) Modifications of hydrophobicity, in vitro adherence and cellular aggregation of Streptococcus mutans by Helichrysum italicum extract. Lett Appl Microbiol 38:423–427

    Article  CAS  PubMed  Google Scholar 

  • Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal-bacterial association: recruiting symbiotic Vibrios from the environment. Proc Natl Acad Sci 97:10231–10235

    Article  CAS  PubMed  Google Scholar 

  • Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182

    Article  CAS  PubMed  Google Scholar 

  • Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB et al (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340

    Article  CAS  PubMed  Google Scholar 

  • Razak FA, Othman RY, Rahim ZH (2006) The effect of Piper betle and Psidium guajava extracts on the cell-surface hydrophobicity of selected early settlers of dental plaque. J Oral Sci 48:71–75

    Article  PubMed  Google Scholar 

  • Sandasi M, Leonard CM, Viljoen AM (2009) The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett Appl Microbiol 50:30–35

    Article  Google Scholar 

  • Serebriakova EV, Darmov IV, Medvedev NP, Alekseev SA, Rybak SI (2002) Evaluation of the hydrophobicity of bacterial cells by measuring their adherence to chloroform drops. Mikrobiologiia 71:237–239

    CAS  PubMed  Google Scholar 

  • Sharon N, Ofek I (2000) Safe as mother’s milk: carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconj J 17:659–664

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Sun H (2002) Type IV pilus-dependent motility and its possible role in bacterial pathogenesis. Infect Immun 70:1–4

    Article  CAS  PubMed  Google Scholar 

  • Shime-Hattori A, Iida T, Arita M, Park KS, Kodama T, Honda T (2006) Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol Lett 264:89–97

    Article  CAS  PubMed  Google Scholar 

  • Sorum H (1999) Antibiotic resistance in aquaculture. Acta Vet Scand Suppl 92:29–36

    CAS  PubMed  Google Scholar 

  • Sousa C, Teixeira P, Oliveira R (2009) The role of extracellular polymers on Staphylococcus epidermidis biofilm biomass and metabolic activity. J Basic Microbiol 49:363–370

    Article  CAS  PubMed  Google Scholar 

  • Thenmozhi R, Nithyanand P, Rathna J, Pandian SK (2009) Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 57:284–294

    Article  CAS  PubMed  Google Scholar 

  • Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431

    Article  CAS  PubMed  Google Scholar 

  • Turi M, Turi E, Koljalg S, Mikelsaar M (1997) Influence of aqueous extracts of medicinal plants on surface hydrophobicity of Escherichia coli strains of different origin. APMIS 105:956–962

    Article  CAS  PubMed  Google Scholar 

  • Wai SN, Mizunoe Y, Takade A, Kawabata SI, Yoshida SI (1998) Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 64:3648–3655

    CAS  PubMed  Google Scholar 

  • Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595

    Article  CAS  PubMed  Google Scholar 

  • Wong HC, Ting SH, Shieh WR (1992) Incidence of toxigenic vibrios in foods available in Taiwan. J Appl Bacteriol 73:197–202

    CAS  PubMed  Google Scholar 

  • Wong H-C, Chung YC, and Yu JA (2002) Attachment and inactivation of Vibrio parahaemolyticus on stainless steel and glass surface. Food Microbiol 19:341–305

    Google Scholar 

  • Ye J, Ma Y, Liu Q, Zhao DL, Wang QY, Zhang YX (2008) Regulation of Vibrio alginolyticus virulence by the LuxS quorum-sensing system. J Fish Dis 31:161–169

    Article  CAS  PubMed  Google Scholar 

  • Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci 96:4028–4033

    Article  CAS  PubMed  Google Scholar 

  • Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17:109–118

    Article  CAS  PubMed  Google Scholar 

  • Yip ES, Geszvain K, DeLoney-Marino CR, Visick KL (2006) The symbiosis regulator rscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol Microbiol 62:1586–1600

    Article  CAS  PubMed  Google Scholar 

  • You J et al (2007) Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol 76:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    CAS  PubMed  Google Scholar 

  • Zhu J, Mekalanos JJ (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5:647–656

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the computational and bioinformatics facility provided by the Alagappa University Bioinformatics Infrastructure Facility (funded by DBT, GOI; Grant No. BT/BI/25/001/2006). Financial support provided to Chari Nithya by Alagappa University in the form of Research Fellowship is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunmugiah Karutha Pandian.

Additional information

Communicated by Jan Roelof van der Meer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nithya, C., Pandian, S.K. The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp.. Arch Microbiol 192, 843–854 (2010). https://doi.org/10.1007/s00203-010-0612-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0612-6

Keywords

Navigation