Skip to main content
Log in

Genomic bipyrimidine nucleotide frequency and microbial reactions to germicidal UV radiation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The role of the genomic bipyrimidine nucleotide frequency in pyrimidine dimer formation caused by germicidal UV radiation was studied in three microbial reference organisms (Escherichia coli K12, Deinococcus radiodurans R1, spores and cells of Bacillus subtilis 168). The sensitive HPLC tandem mass spectrometry assay was used to identify and quantify the different bipyrimidine photoproducts induced in the DNA of microorganisms by germicidal UV radiation. The yields of photoproducts per applied fluence were very similar among vegetative cells but twofold reduced in spores. This similarity in DNA photoreactivity greatly contrasted with the 11-fold range determined in the fluence causing a decimal reduction of survival. It was also found that the spectrum of UV-induced bipyrimidine lesions was species-specific and the formation rates of bi-thymine and bi-cytosine photoproducts correlated with the genomic frequencies of thymine and cytosine dinucleotides in the bacterial model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O’Brien TC, Shah A, Tierney JT, Tomm LL, O’Gara TM, Goranov AI, Grossman AD, Lovett SM (2005) Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 187:7655–7666

    Article  CAS  PubMed  Google Scholar 

  • Bauermeister A, Bentchikou E, Moeller R, Rettberg P (2009) Roles of PprA, IrrE, and RecA in the resistance of Deinococcus radiodurans to germicidal and environmentally relevant UV radiation. Arch Microbiol 191:913–918

    Article  CAS  PubMed  Google Scholar 

  • Blatchley ER, Emerick RW, Hargy T, Hoyer O, Hultquist RH, Sakaji RH, Schmelling DC, Soroushian F, Tchobanoglous G (2000) Chapter 3: protocols. In: Melin G (ed) Ultraviolet disinfection, guidelines for drinking water and water reuse. National Water Research Institute, Fountain Valley, pp 37–56

    Google Scholar 

  • Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17

    CAS  PubMed  Google Scholar 

  • Carrera M, Zandomeni RO, Sagripanti JL (2008) Wet and dry density of Bacillus anthracis and other Bacillus species. J Appl Microbiol 105:68–77

    Article  CAS  PubMed  Google Scholar 

  • Chang JCH, Ossoff SF, Lobe DC, Dorfman MH, Dumais CM, Qualls RG, Johnson JD (1985) UV inactivation of pathogenic and indicator microorganisms. Appl Environ Microbiol 49:1361–1365

    CAS  PubMed  Google Scholar 

  • Coohill TP, Sagripanti JL (2008) Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. Photochem Photobiol 84:1084–1090

    CAS  PubMed  Google Scholar 

  • Coohill TP, Sagripanti JL (2009) Bacterial inactivation by solar ultraviolet radiation compared with sensitivity to 254 nm radiation. Photochem Photobiol 85:1043–1052

    Article  CAS  PubMed  Google Scholar 

  • Deller S, Mascher F, Platzer S, Reinthaler FF, Marth E (2006) Effect of solar radiation on survival of indicator bacteria in bathing waters. Cent Eur J Public Health 14:133–137

    PubMed  Google Scholar 

  • Donnellan JE Jr, Setlow RB (1965) Thymine photoproducts but not thymine dimers are found in ultraviolet irradiated bacterial spores. Science 149:308–310

    Article  CAS  PubMed  Google Scholar 

  • Douki T, Cadet J (2001) Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry 40:2495–2501

    Article  CAS  PubMed  Google Scholar 

  • Douki T, Cadet J (2003) Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. Photochem Photobiol Sci 2:433–436

    Article  CAS  PubMed  Google Scholar 

  • Douki T, Laporte G, Cadet J (2003) Inter-strand photoproducts are produced in high yield within A-DNA exposed to UVC radiation. Nucleic Acids Res 31:3134–3142

    Article  CAS  PubMed  Google Scholar 

  • Douki T, Setlow B, Setlow P (2005a) Effects of the binding of alpha/beta-type small, acid-soluble spore proteins on the photochemistry of DNA in spores of Bacillus subtilis and in vitro. Photochem Photobiol 81:163–169

    Article  CAS  PubMed  Google Scholar 

  • Douki T, Setlow B, Setlow P (2005b) Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochem Photobiol Sci 8:591–597

    Article  Google Scholar 

  • Eischeid AC, Linden KG (2007) Efficiency of pyrimidine dimer formation in Escherichia coli across UV wavelengths. J Appl Microbiol 103:1650–1656

    Article  CAS  PubMed  Google Scholar 

  • Eischeid AC, Meyer JN, Linden KG (2009) UV disinfection of adenoviruses: molecular indications of DNA damage efficiency. Appl Environ Microbiol 75:23–28

    Article  CAS  PubMed  Google Scholar 

  • Franklin WA, Haseltine WA (1986) The role of the (6–4) photoproduct in ultraviolet light-induced transition mutations in E. coli. Mutat Res 165:1–7

    CAS  PubMed  Google Scholar 

  • Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42:399–435

    Article  CAS  PubMed  Google Scholar 

  • Gentil A, Le Page F, Margot A, Lawrence CW, Borden A, Sarasin A (1996) Mutagenicity of a unique thymine-thymine dimer or thymine-thymine pyrimidine pyrimidone (6–4) photoproduct in mammalian cells. Nucleic Acids Res 24:1837–1840

    Article  CAS  PubMed  Google Scholar 

  • Goosen N, Moolenaar GF (2008) Repair of UV damage in bacteria. DNA Repair 7:353–379

    Article  CAS  PubMed  Google Scholar 

  • Hanson MT (1978) Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol 134:71–75

    Google Scholar 

  • Harm W (1980) Biological effects of ultraviolet radiation. Cambridge University Press, New York

    Google Scholar 

  • Hendel A, Ziv O, Gueranger Q, Geacintov N, Livneh Z (2008) Reduced efficiency and increased mutagenicity of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6–4 photoproduct, in human cells lacking DNA polymerase eta. DNA Repair 7:1636–1646

    Article  CAS  PubMed  Google Scholar 

  • Lazarova V, Savoys P (2004) Technical and sanitary aspects of wastewater disinfection by UV irradiation for landscape irrigation. Water Sci Technol 50:203–209

    CAS  PubMed  Google Scholar 

  • Marshall MM, Hayes S, Moffett J, Sterling CR, Nicholson WL (2003) Comparison of UV inactivation of spores of three Encephalitozoon species with that of spores of two DNA repair-deficient Bacillus subtilis biodosimetry strains. Appl Environ Microbiol 69:683–685

    Article  CAS  PubMed  Google Scholar 

  • Matallana-Surget S, Meador JA, Joux F, Douki T (2008) Effect of the GC content of DNA on the distribution of UVB-induced bipyrimidine photoproducts. Photochem Photobiol Sci 7:794–801

    Article  CAS  PubMed  Google Scholar 

  • Matallana-Surget S, Douki T, Cavicchioli R, Joux F (2009) Remarkable resistance to UVB of the marine bacterium Photobacterium angustum explained by an unexpected role of photolyase. Photochem Photobiol Sci 8:1313–1320

    Article  CAS  PubMed  Google Scholar 

  • Moeller R, Horneck G, Facius R, Stackebrandt E (2005) Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol Ecol 51:231–236

    Google Scholar 

  • Moeller R, Douki T, Cadet J, Stackebrandt E, Nicholson WL, Rettberg P, Reitz G, Horneck G (2007a) UV radiation induced formation of DNA bipyrimidine photoproducts in Bacillus subtilis endospores and their repair during germination. Int Microbiol 10:39–46

    CAS  PubMed  Google Scholar 

  • Moeller R, Stackebrandt E, Douki T, Cadet J, Rettberg P, Mollenkopf HJ, Reitz G, Horneck G (2007b) DNA bipyrimidine photoproduct repair and transcriptional response of UV-C irradiated Bacillus subtilis. Arch Microbiol 188:421–431

    Article  CAS  PubMed  Google Scholar 

  • Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P, Doherty AJ, Horneck G, Nicholson WL (2007c) Role of DNA repair by non-homologous end joining (NHEJ) in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV and ionizing radiation. J Bacteriol 189:3306–3311

    Article  CAS  PubMed  Google Scholar 

  • Moeller R, Setlow P, Reitz G, Nicholson WL (2009) Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar UV radiation. Appl Environ Microbiol 75:5202–5208

    Article  CAS  PubMed  Google Scholar 

  • Munakata N (1981) Killing and mutagenic action of sunlight upon Bacillus subtilis spores: a dosimetric system. Mutat Res 82:263–268

    CAS  PubMed  Google Scholar 

  • Munakata N, Makita K, Bolsee D, Gillotay D, Horneck G (2000) Spore dosimetry of solar UV radiation: applications to monitoring of daily irradiance and personal exposure. Adv Space Res 26:1995–2003

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H (1987) Sterilization efficacy of UV irradiation on microbial aerosols under dynamic airflow by experimental air conditioning systems. Bull Tokyo Med Dent Univ 34:25–40

    Google Scholar 

  • Nicholson WL, Galeano B (2003) UV resistance of Bacillus anthracis spores revisited: validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne. Appl Environ Microbiol 69:1327–1330

    Article  CAS  PubMed  Google Scholar 

  • Nicholson WL, Setlow P (1990) Sporulation, germination, and outgrowth. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Sussex, pp 391–450

    Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of bacterial endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed  Google Scholar 

  • Nicholson WL, Schuerger AC, Setlow P (2005) The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutat Res 571:249–264

    CAS  PubMed  Google Scholar 

  • Oguma K, Katayama H, Mitani H, Morita S, Hirata T, Ohgaki S (2001) Determination of pyrimidine dimers in Escherichia coli and Cryptosporidium parvum during UV light inactivation, photoreactivation, and dark repair. Appl Environ Microbiol 67:4630–4637

    Article  CAS  PubMed  Google Scholar 

  • Palmeira L, Guéguen L, Lobry JR (2006) UV-targeted dinucleotides are not depleted in light-exposed prokaryotic genomes. Mol Biol Evol 23:2214–2219

    Article  CAS  PubMed  Google Scholar 

  • Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O (2001) The comprehensive microbial resource. Nucleic Acids Res 29:123–125

    Article  CAS  PubMed  Google Scholar 

  • Pogoda de la Vega U, Rettberg P, Douki T, Cadet J, Horneck G (2005) Sensitivity to polychromatic UV-radiation of strains of Deinococcus radiodurans differing in their DNA repair capacity. Int J Radiat Biol 81:601–611

    Article  CAS  PubMed  Google Scholar 

  • Sagripanti JL, Carrera M, Insalaco J, Ziemski M, Rogers J, Zandomeni R (2007) Virulent spores of Bacillus anthracis and other Bacillus species deposited on solid surfaces have similar sensitivity to chemical decontaminants. J Appl Microbiol 102:11–21

    Article  PubMed  Google Scholar 

  • Sargent MG (1980) A procedure for isolating high quality DNA from spores of Bacillus subtilis 168. J Gen Microbiol 116:511–514

    CAS  PubMed  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525

    Article  CAS  PubMed  Google Scholar 

  • Setlow RB, Carrier WL (1966) Pyrimidine dimers in ultraviolet-irradiated DNA’s. J Mol Biol 17:237–254

    Article  CAS  PubMed  Google Scholar 

  • Sinha RP, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  CAS  PubMed  Google Scholar 

  • Stannard CJ, Abbiss JS, Wood JM (1985) Efficiency of treatments involving UV irradiation for decontaminating packaging board of different surface compositions. J Food Prot 48:786–789

    Google Scholar 

  • Tirgari S, Moseley BEB (1980) Transformation in Micrococcus radiodurans: measurement of various parameters and evidence for multiple independently segregating genomes per cell. J Gen Microbiol 119:287–297

    Google Scholar 

  • Varghese AJ (1970) 5-Thyminyl-5, 6-dihydrothymine from DNA irradiated with ultraviolet light. Biochem Biophys Res Commun 38:484–490

    Article  CAS  PubMed  Google Scholar 

  • Weber DJ, Sickbert-Bennett E, Gergen MF, Rutala WA (2003) Efficacy of selected hand hygiene agents used to remove Bacillus atrophaeus (a surrogate of Bacillus anthracis) from contaminated hands. JAMA 289:1274–1277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to Peter Heeg for the fruitful discussion and critical reading of the manuscript, and Jörg Nellen and Ulrike Pogoda de la Vega for their help in the data interpretation. This work was supported in part by grants from NASA (NNA06CB58G and NNX08AO15G) to W.L.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Moeller.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeller, R., Douki, T., Rettberg, P. et al. Genomic bipyrimidine nucleotide frequency and microbial reactions to germicidal UV radiation. Arch Microbiol 192, 521–529 (2010). https://doi.org/10.1007/s00203-010-0579-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0579-3

Keywords

Profiles

  1. Petra Rettberg
  2. Jean Cadet