Skip to main content
Log in

Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Dipicolinic acid (pyridine-2,6-carboxylic acid; DPA) is a major component of bacterial spores and has been shown to be an important determinant of spore resistance. In the core of dormant Bacillus subtilis spores, DPA is associated with divalent calcium in a 1:1 chelate (Ca–DPA). Spores excrete Ca–DPA during germination, but it is unknown whether Ca and DPA are imported separately or together into the developing spore. Elemental analysis by scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM–EDS) of wild-type spores and mutant spores lacking the ability to synthesize DPA showed that DPA-less spores also lacked calcium, suggesting that the two compounds may be co-imported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Daniel RA, Errington J (1993) Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis. J Mol Biol 232:468–483

    Article  CAS  PubMed  Google Scholar 

  • Fort P, Errington J (1985) Nucleotide sequence and complementation analysis of a polycistronic sporulation operon, spoVA, in Bacillus subtilis. J Gen Microbiol 131:1091–1105

    CAS  PubMed  Google Scholar 

  • Hanson RS, Curry MV, Garner JV, Halvorson HO (1972) Mutants of Bacillus cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium. Can J Microbiol 18:1139–1143

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Chen D, Pelczar PL, Vepachedu VR, Setlow P, Li Y (2007) Levels of Ca2+-dipicolinic acid in individual Bacillus spores determined using microfluidic Raman tweezers. J Bacteriol 189:4681–4687

    Article  CAS  PubMed  Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Moir A, Smith DA (1990) The genetics of bacterial spore germination. Annu Rev Microbiol 44:531–553

    Article  CAS  PubMed  Google Scholar 

  • Moir A, Lafferty E, Smith DA (1979) Genetic analysis of spore germination mutants of Bacillus subtilis 168: the correlation of phenotype and map location. J Gen Microbiol 111:165–180

    CAS  PubMed  Google Scholar 

  • Murrell WG (1967) The biochemistry of the bacterial spore. Adv Microb Physiol 1:133–251

    Article  CAS  Google Scholar 

  • Murrell WG, Warth AG (1965) Composition and heat resistance of bacterial spores. In: Campbell LL, Halvorson HO (eds) Spores III. American Society for Microbiology, Washington DC, pp 1–24

    Google Scholar 

  • Nicholson WL (2002) Roles of Bacillus spores in the environment. Cell Mol Life Sci 59:410–416

    Article  CAS  PubMed  Google Scholar 

  • Nicholson WL (2004) Ubiquity, longevity, and ecological roles of Bacillus spores. In: Ricca E, Henriques AO, Cutting SM (eds) Bacterial spore formers: probiotics and emerging applications. Horizon Scientific Press, Norfolk, pp 1–15

    Google Scholar 

  • Nicholson WL, Setlow P (1990) Chapter 9. Sporulation, germination, and outgrowth. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, New York, pp 391–450

    Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of bacterial endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed  Google Scholar 

  • Paidhungat M, Setlow P (1999) Isolation and characterization of mutations in Bacillus subtilis that allow spore germination in the novel germinant d-alanine. J Bacteriol 181:3341–3350

    CAS  PubMed  Google Scholar 

  • Paidhungat M, Setlow P (2000) Role of Ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis. J Bacteriol 182:2513–2519

    Article  CAS  PubMed  Google Scholar 

  • Paidhungat M, Setlow B, Driks A, Setlow P (2000) Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol 182:5505–5512

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Chen D, Setlow P, Li Y (2009) Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics. Anal Chem 81:4035–4042

    Article  CAS  PubMed  Google Scholar 

  • Rotman Y, Fields ML (1967) A modified reagent for dipicolinic acid analysis. Anal Biochem 22:168

    Article  Google Scholar 

  • Sammons RL, Moir A, Smith DA (1981) Isolation and properties of spore germination mutants of Bacillus subtilis 168 deficient in the initiation of germination. J Gen Microbiol 124:229–241

    Google Scholar 

  • Schaeffer P, Millet J, Aubert J-P (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 54:704–711

    Article  CAS  PubMed  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat, and chemicals. J Appl Microbiol 101:514–525

    Article  CAS  PubMed  Google Scholar 

  • Setlow B, Setlow P (1993) Dipicolinic acid greatly enhances production of spore photoproduct in bacterial spores upon UV irradiation. Appl Environ Microbiol 59:640–643

    CAS  PubMed  Google Scholar 

  • Slieman TA, Nicholson WL (2001) Role of dipicolinic acid in resistance of Bacillus subtilis spores exposed to artificial and solar UV radiation. Appl Environ Microbiol 67:1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Stewart M, Somylo AP, Somlyo AV, Shuman H, Lindsay JA, Murrell WG (1980) Distribution of calcium and other elements in cryosectioned Bacillus cereus T spores, determined by high-resolution scanning electron probe X-ray analysis. J Bacteriol 143:481–491

    CAS  PubMed  Google Scholar 

  • Tovar-Rojo F, Chander M, Setlow B, Setlow P (2002) The products of the spoVA operon are involved in dipicolinic acid uptake into developing spores of Bacillus subtilis. J Bacteriol 184:584–587

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Pete Setlow for generous donation of the strains used. This work was supported by USDA grant FLA-MCS-04602 to W.L.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne L. Nicholson.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hintze, P.E., Nicholson, W.L. Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium. Arch Microbiol 192, 493–497 (2010). https://doi.org/10.1007/s00203-010-0569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0569-5

Keywords

Navigation