Skip to main content
Log in

Isolation of a novel bacterium, Blautia glucerasei sp. nov., hydrolyzing plant glucosylceramide to ceramide

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A bacterial strain that is capable of hydrolyzing plant glucosylceramide (GluCer) was newly isolated from dog feces. The novel strain, designated as strain HFTH-1T, hydrolyzed plant GluCer with a variety of chemical structures, but did not hydrolyze glucosylsphingosine, lactosylceramide, or monosialoganglioside GM3, indicating that strain HFTH-1T produces GluCer-specific glucosylceramidase. Strain HFTH-1T was Gram-positive, anaerobic, oval-spore-forming, rod-shaped, lecithinase-negative, and lipase-negative. It fermented a wide variety of carbohydrates and produced mainly acetate, formate, and lactate from glucose. The G + C content of its DNA was 40.7 mol%. The phylogenetic analysis of 16S rRNA sequence revealed that strain HFTH-1T is placed in the clostridial rRNA cluster XIVa, with Ruminococcus obeum as the nearest relative. Pairwise comparison revealed approximately 5.0% sequence divergence between strain HFTH-1T and the type strain of R. obeum. On the basis of its phenotypic characteristics and phylogenetic divergence, it is proposed that the hitherto unknown rod-shaped bacterial strain HFTH-1T (= DSM 22028T = NBRC 104932T) should be placed in the genus Blautia as a novel species, Blautia glucerasei sp. nov, the only currently known isolate of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn EH, Schroeder JJ (2002) Sphingoid bases and ceramide induce apoptosis in HT-29 and HCT-116 human colon cancer cells. Exp Biol Med (Maywood) 227:345–353

    CAS  Google Scholar 

  • Ballou LR, Laulederkind SJ, Rosloniec EF, Raghow R (1996) Ceramide signalling and the immune response. Biochim Biophys Acta 1301:273–287

    PubMed  Google Scholar 

  • Beiss U (1964) On the Paper Chromatographic Separation of Plant Lipids. J Chromatogr 13:104–110

    Article  CAS  PubMed  Google Scholar 

  • Bergey DH, Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD (1996) Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 166:176–183

    Article  CAS  PubMed  Google Scholar 

  • Bohn M, Heinz E, Luthje S (2001) Lipid composition and fluidity of plasma membranes isolated from corn (Zea mays L.) roots. Arch Biochem Biophys 387:35–40

    Article  CAS  PubMed  Google Scholar 

  • Collins MD et al (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    Article  CAS  PubMed  Google Scholar 

  • Dillehay DL, Webb SK, Schmelz EM, Merrill AH Jr (1994) Dietary sphingomyelin inhibits 1, 2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr 124:615–620

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Furuya H, Ohkawara S, Nagashima K, Asanuma N, Hino T (2008) Dietary sphingomyelin alleviates experimental inflammatory bowel disease in mice. Int J Vitam Nutr Res 78:41–49

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt P (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C

    Google Scholar 

  • Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269:3125–3128

    CAS  PubMed  Google Scholar 

  • Hannun YA, Linardic CM (1993) Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta 1154:223–236

    CAS  PubMed  Google Scholar 

  • Hannun YA, Loomis CR, Merrill AH Jr, Bell RM (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261:12604–12609

    CAS  PubMed  Google Scholar 

  • Hino T, Shimada K, Maruyama T (1994) Substrate Preference in a Strain of Megasphaera elsdenii, a Ruminal Bacterium, and Its Implications in Propionate Production and Growth Competition. Appl Environ Microbiol 60:1827–1831

    CAS  PubMed  Google Scholar 

  • Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A (1991) Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol 96:523–526

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi Y et al (2007) A novel endoglycoceramidase hydrolyzes oligogalactosylceramides to produce galactooligosaccharides and ceramides. J Biol Chem 282:11386–11396

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Yamagata T (1986) A novel glycosphingolipid-degrading enzyme cleaves the linkage between the oligosaccharide and ceramide of neutral and acidic glycosphingolipids. J Biol Chem 261:14278–14282

    CAS  PubMed  Google Scholar 

  • Ito M, Yamagata T (1989) Purification and characterization of glycosphingolipid-specific endoglycosidases (endoglycoceramidases) from a mutant strain of Rhodococcus sp. Evidence for three molecular species of endoglycoceramidase with different specificities. J Biol Chem 264:9510–9519

    CAS  PubMed  Google Scholar 

  • Kamlage B, Gruhl B, Blaut M (1997) Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides. Appl Environ Microbiol 63:1732–1738

    CAS  PubMed  Google Scholar 

  • Kaneuchi C, Benno Y, Mitsuoka T (1976) Clostridium coccoides, a New Species from the Feces of Mice. Int J Syst Bacteriol 26:482–486

    Article  Google Scholar 

  • Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77:325–328

    Article  CAS  PubMed  Google Scholar 

  • Lampe MA et al (1983a) Human stratum corneum lipids: characterization and regional variations. J Lipid Res 24:120–130

    CAS  PubMed  Google Scholar 

  • Lampe MA, Williams ML, Elias PM (1983b) Human epidermal lipids: characterization and modulations during differentiation. J Lipid Res 24:131–140

    CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt EaG M (ed) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, Chichester, pp 115–175

    Google Scholar 

  • Lauter CJ, Trams EG (1962) Spectrophotometric determination of sphingosine. J Lipid Res 3:136

    CAS  Google Scholar 

  • Lemonnier LA, Dillehay DL, Vespremi MJ, Abrams J, Brody E, Schmelz EM (2003) Sphingomyelin in the suppression of colon tumors: prevention versus intervention. Arch Biochem Biophys 419:129–138

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Finegold SM, Song Y, Lawson PA (2008) Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:1896–1902

    Article  CAS  PubMed  Google Scholar 

  • Macheleidt O, Kaiser HW, Sandhoff K (2002) Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J Invest Dermatol 119:166–173

    Article  CAS  PubMed  Google Scholar 

  • Melnik B, Hollmann J, Plewig G (1988) Decreased stratum corneum ceramides in atopic individuals–a pathobiochemical factor in xerosis? Br J Dermatol 119:547–549

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Hino T, Itabashi H (1992) Effects of extracellular pH on the intracellular pH and membrane potential of cellulolytic ruminal bacteria, Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes. J Gen Appl Microbiol 38:567–573

    Article  CAS  Google Scholar 

  • Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R (1993) Ceramide composition of the psoriatic scale. Biochim Biophys Acta 1182:147–151

    CAS  PubMed  Google Scholar 

  • Motta S, Sesana S, Ghidoni R, Monti M (1995) Content of the different lipid classes in psoriatic scale. Arch Dermatol Res 287:691–694

    Article  CAS  PubMed  Google Scholar 

  • Nilsson A (1968) Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 164:575–584

    CAS  PubMed  Google Scholar 

  • Nilsson A (1969) Metabolism of cerebroside in the intestinal tract of the rat. Biochim Biophys Acta 187:113–121

    CAS  PubMed  Google Scholar 

  • Ogimoto K, Imai S (1981) Atlas of Rumen Microbiology. Japan Scientific Societies Press, Tokyo, Japan

    Google Scholar 

  • Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264:19076–19080

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sato R, Tanaka M (1997) Intestinal distribution and intraluminal localization of orally administered Clostridium butyricum in rats. Microbiol Immunol 41:665–671

    PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  Google Scholar 

  • Schmelz EM, Crall KJ, Larocque R, Dillehay DL, Merrill AH Jr (1994) Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr 124:702–712

    CAS  PubMed  Google Scholar 

  • Schmelz EM, Dillehay DL, Webb SK, Reiter A, Adams J, Merrill AH Jr (1996) Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1, 2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res 56:4936–4941

    CAS  PubMed  Google Scholar 

  • Schmelz EM, Sullards MC, Dillehay DL, Merrill AH Jr (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1, 2-dimethylhydrazine-treated CF1 mice. J Nutr 130:522–527

    CAS  PubMed  Google Scholar 

  • Simmering R et al (2002) Ruminococcus luti sp. nov., isolated from a human faecal sample. Syst Appl Microbiol 25:189–193

    Article  CAS  PubMed  Google Scholar 

  • Spiegel S, Merrill AH Jr (1996) Sphingolipid metabolism and cell growth regulation. FASEB J 10:1388–1397

    CAS  PubMed  Google Scholar 

  • Sumida T, Sueyoshi N, Ito M (2002) Molecular cloning and characterization of a novel glucocerebrosidase of Paenibacillus sp. TS12. J Biochem 132:237–243

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Iwai Y, Tomoda H, Nimura N, Kinoshita T, Omura S (1989) Optical resolution of 2, 6-diaminopimelic acid stereoisomers by high performance liquid chromatography for the chemotaxonomy of actinomycete strains. J Gen Appl Microbiol 35:27–32

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Tokura Y, Wakita H, Yagi H, Nishimura K, Furukawa F, Takigawa M (1996) Th2 suppressor cells are more susceptible to sphingosine than Th1 cells in murine contact photosensitivity. J Invest Dermatol 107:34–40

    Article  CAS  PubMed  Google Scholar 

  • Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129:1239–1250

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (No. 18780205 and 18580274) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT), and by “High-Tech Research Center” Project for Private Universities: matching fund subsidy from MEXT, 2006–2008. We express our thanks to Tsuji Oil Mill co., Ltd. (Matsuzaka, Mie, Japan) for providing purified GluCer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Hino.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuya, H., Ide, Y., Hamamoto, M. et al. Isolation of a novel bacterium, Blautia glucerasei sp. nov., hydrolyzing plant glucosylceramide to ceramide. Arch Microbiol 192, 365–372 (2010). https://doi.org/10.1007/s00203-010-0566-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0566-8

Keywords

Navigation