Archives of Microbiology

, Volume 192, Issue 3, pp 201–209 | Cite as

Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1

  • Ji-Young Ryu
  • Jiyoung Seo
  • Tatsuya Unno
  • Joong-Hoon Ahn
  • Tao Yan
  • Michael J. Sadowsky
  • Hor-Gil HurEmail author
Original Paper


The plant-derived phenylpropanoids eugenol and isoeugenol have been proposed as useful precursors for the production of natural vanillin. Genes involved in the metabolism of eugenol and isoeugenol were clustered in region of about a 30 kb of Pseudomonas nitroreducens Jin1. Two of the 23 ORFs in this region, ORFs 26 (iemR) and 27 (iem), were predicted to be involved in the conversion of isoeugenol to vanillin. The deduced amino acid sequence of isoeugenol monooxygenase (Iem) of strain Jin1 had 81.4% identity to isoeugenol monooxygenase from Pseudomonas putida IE27, which also transforms isoeugenol to vanillin. Iem was expressed in E. coli BL21(DE3) and was found to lead to isoeugenol to vanillin transformation. Deletion and cloning analyses indicated that the gene iemR, located upstream of iem, is required for expression of iem in the presence of isoeugenol, suggesting it to be the iem regulatory gene. Reverse transcription, real-time PCR analyses indicated that the genes involved in the metabolism of eugenol and isoeugenol were differently induced by isoeugenol, eugenol, and vanillin.


Isoeugenol monooxygenase Pseudomonas Vanillin Eugenol Regulator 



This study was carried out with the support of “On-Site Cooperative Agriculture Research Project (project no. 20070101080021)”, RDA, Suwon, Republic of Korea.

Supplementary material

203_2010_547_MOESM1_ESM.doc (2.6 mb)
Supplementary material 1 (DOC 2648 kb)


  1. Achterholt S, Priefert H, Steinbuchel A (1998) Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. strain HR199 and molecular characterization of the gene. J Bacteriol 180:4387–4391PubMedGoogle Scholar
  2. Banfalvi Z, Nieuwkoop A, Schell M, Besl L, Stacey G (1988) Regulation of nod gene expression in Bradyrhizobium japonicum. Mol Gen Genet 214:420–424CrossRefPubMedGoogle Scholar
  3. Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472CrossRefPubMedGoogle Scholar
  4. Devers M, Soulas G, Martin-Laurent F (2004) Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Methods 56:3–15CrossRefPubMedGoogle Scholar
  5. Furukawa H, Morita H, Yoshida T, Nagasawa T (2003) Conversion of isoeugenol into vanillic acid by Pseudomonas putida I58 cells exhibiting high isoeugenol-degrading activity. J Biosci Bioeng 96:401–403PubMedGoogle Scholar
  6. Hua D, Ma C, Lin S, Song L, Deng Z, Maomy Z, Zhang Z, Yu B, Xu P (2007) Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. J Biotechnol 130:463–470Google Scholar
  7. Kamoda S, Saburi Y (1993) Cloning, expression, and sequence analysis of a lignostilbene-α, β-dioxygenase gene from Pseudomonas paucimobilis TMY1009. Biosci Biotechnol Biochem 57:926–930CrossRefPubMedGoogle Scholar
  8. Kasana RC, Sharma UK, Sharma N, Sinha AK (2007) Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Curr Microbiol 54:457–461CrossRefPubMedGoogle Scholar
  9. Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, Dean RA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162CrossRefPubMedGoogle Scholar
  10. Overhage J, Priefert H, Steinbuchel A (1999) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199. Appl Environ Microbiol 65:4837–4847PubMedGoogle Scholar
  11. Park S-D, Lee S-N, Park I-H, Choi J-S, Jeong W-K, Kim Y, Lee H-S (2004) Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J Microbiol Biotech 14:789–795Google Scholar
  12. Priefert H, Rabenhorst J, Steinbuchel A (1997) Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol 179:2595–2607PubMedGoogle Scholar
  13. Priefert H, Overhage J, Steinbuchel A (1999) Identification and molecular characterization of the eugenol hydroxylase genes (ehyA/ehyB) of Pseudomonas sp. strain HR199. Arch Microbiol 172:354–363CrossRefPubMedGoogle Scholar
  14. Priefert H, Rabenhorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314CrossRefPubMedGoogle Scholar
  15. Rabenhorst J (1996) Production of methoxyphenol-type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. Appl Microbial Biotechnol 46:470–474CrossRefGoogle Scholar
  16. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor University Laboratory Press, New YorkGoogle Scholar
  17. Shimoni E, Ravid U, Shoham Y (2000) Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. J Biotechnol 78:1–9CrossRefPubMedGoogle Scholar
  18. Steinbüchel A, Priefert H, Rabenhorst J (1998) Enzymes for the synthesis of coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin, vanillic acid and their applications. European Patent EP0845532. In: HAARMANN & REIMER GMBHGoogle Scholar
  19. Tadasa K, Kayahara H (1977) Degradation of eugenol by a microorganism. Agric Biol Chem 41:925–929Google Scholar
  20. Tropel D, van der Meer JR (2004) Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68:474–500CrossRefPubMedGoogle Scholar
  21. Unno T, Kim SJ, Kanaly RA, Ahn J-H, Kang SI, Hur H-G (2007) Metabolic characterization of newly isolated Pseudomonas nitroreducens Jin1 growing on eugenol and isoeugenol. J Agric Food Chem 55:8556–8561CrossRefPubMedGoogle Scholar
  22. Yamada M, Okada Y, Yoshida T, Nagasawa T (2007a) Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl Microbiol Biotechnol 73:1025–1030CrossRefPubMedGoogle Scholar
  23. Yamada M, Okada Y, Yoshida T, Nagasawa T (2007b) Purification, characterization and gene cloning of isoeugenol-degrading enzyme from Pseudomonas putida IE27. Arch Microbiol 187:511–517CrossRefPubMedGoogle Scholar
  24. Yamada M, Okada Y, Yoshida T, Nagasawa T (2008) Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida. Biotechnol Lett 30:665–670CrossRefPubMedGoogle Scholar
  25. Zhang Y, Xu P, Han S, Yan H, Ma C (2006) Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8. Appl Microbiol Biotechnol 73:771–779CrossRefPubMedGoogle Scholar
  26. Zhao LQ, Sun ZH, Zheng P, Zhu LL (2005) Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnol Lett 27:1505–1509CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ji-Young Ryu
    • 1
  • Jiyoung Seo
    • 1
  • Tatsuya Unno
    • 1
  • Joong-Hoon Ahn
    • 3
  • Tao Yan
    • 4
  • Michael J. Sadowsky
    • 5
  • Hor-Gil Hur
    • 1
    • 2
    Email author
  1. 1.Department of Environmental Science and EngineeringGwangju Institute of Science and TechnologyGwangjuKorea
  2. 2.International Environmental Research CenterGwangju Institute of Science and TechnologyGwangjuKorea
  3. 3.Department of Bioscience and BiotechnologyKonkuk UniversitySeoulKorea
  4. 4.Department of Civil and Environmental EngineeringUniversity of HawaiiHonolulu, HawaiiUSA
  5. 5.Department of Soil, Water, and Climate, BioTechnology InstituteUniversity of MinnesotaSt. PaulUSA

Personalised recommendations