Advertisement

Archives of Microbiology

, 192:51 | Cite as

Functional analysis of a putative holin-like peptide-coding gene in the genome of Bacillus licheniformis AnBa9

  • Thangamani Anthony
  • Gunasekaran Stalin Chellappa
  • Thangamani Rajesh
  • Paramasamy Gunasekaran
Original Paper

Abstract

BhlA, a putative holin-like protein of Bacillus licheniformis AnBa9 expressed in Escherichia coli BL21(DE3) showed antibacterial activity against several gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and Micrococcus luteus. Deletion analysis of bhlA suggests that a hydrophobic transmembrane domain, BhlATM is essential for antibacterial activity. Though the minimum inhibitory concentration (MIC) of BhlA was sevenfold lower than BhlATM, transmembrane domain deleted construct (BhlA∆TM) had no antibacterial activity. The expression of BhlA in E. coli was found to be toxic to cells. Therefore, the bhlA was cloned in yeast surface display vector pYD1 and expressed in Saccharomyces cerevisiae. The surface displayed yeast showed inhibition of several gram-positive bacteria. This recombinant yeast expressing BhlA may be used as biodrug for efficient control of multiple drug-resistant bacterial infections.

Keywords

Bacillus licheniformis BhlA Holin-like protein Transmembrane domain Antibacterial activity Yeast surface display 

Notes

Acknowledgments

This work was supported by a grant from the Department of Science and Technology, India under OYS (SR/FT/L-98/2004) to TA. Support facility from Centre for Excellence in Genomic Sciences, Networking Resource Centre in Biological Sciences, Madurai Kamaraj University is gratefully acknowledged.

References

  1. Anthony T, Rajesh T, Kayalvizhi N, Gunasekaran P (2009) Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresour Technol 100:872–877CrossRefPubMedGoogle Scholar
  2. Bläsi U, Nam K, Hartz D, Gold L, Young R (1989) Dual translational start sites control function of the lambda S gene. EMBO J 8:3501–3510PubMedGoogle Scholar
  3. Bläsi U, Fraisl P, Chang CY, Zhang N, Young R (1999) The C-terminal sequence of the lambda holin constitutes a cytoplasmic regulatory domain. J Bacteriol 181:2922–2929PubMedGoogle Scholar
  4. Bonovich MT, Young R (1991) Dual start motif in two lambdoid S genes unrelated to λS. J Bacteriol 173:2897–2905PubMedGoogle Scholar
  5. Gietz RD, Woods RA (2001) Genetic transformation of yeast. Bio-Techniques 30:816–820, 822–826, 828Google Scholar
  6. Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54:648–653CrossRefPubMedGoogle Scholar
  7. Murdoch DR, Mirrett S, Harrell LJ, Donabedian SM, Zervos MJ, Reller LB (2003) Comparison of microscan broth microdilution, synergy quad plate agar dilution, and disk diffusion screening methods for detection of high-level aminoglycoside resistance in Enterococcus Species. J Clin Microbiol 41:2703–2705CrossRefPubMedGoogle Scholar
  8. Natasa V, Isabella M, Bläsi U, Siegfried S, Martin JM (2003) Functional regulation of the Listeria monocytogenes bacteriophage A118 holin by an intragenic inhibitor lacking the first transmembrane domain. Mol Microbiol 48:173–186CrossRefGoogle Scholar
  9. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Mol Biol Rev 49:1–32Google Scholar
  10. Takáč M, Witte A, Bläsi U (2005) Functional analysis of the lysis genes of Staphylococcus aureus phage P68 in Escherichia coli. Microbiol 151:2331–2342CrossRefGoogle Scholar
  11. Tran TA, Struck DK, Young R (2005) Periplasmic domains define holin-antiholin interactions in T4 lysis inhibition. J Bacteriol 187:6631–6640CrossRefPubMedGoogle Scholar
  12. Young R, Bläsi U (1995) Holins: form and function in bacteriophage lysis. FEMS Microbiol Rev 17:191–205CrossRefPubMedGoogle Scholar
  13. Žiedaitė G, Daugelavičius R, Bamford JKH, Bamford DH (2004) The holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J Bacteriol 187:5397–5405Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Thangamani Anthony
    • 1
    • 2
  • Gunasekaran Stalin Chellappa
    • 1
  • Thangamani Rajesh
    • 1
  • Paramasamy Gunasekaran
    • 1
  1. 1.Department of Genetics, School of Biological Sciences, Centre for Excellence in Genomic SciencesMadurai Kamaraj UniversityMaduraiIndia
  2. 2.Department of BotanyArignar Anna Government Arts CollegeNamakkalIndia

Personalised recommendations