Skip to main content
Log in

The PQQ biosynthetic operons and their transcriptional regulation in Pseudomonas aeruginosa

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript


Gene PA1990 of Pseudomonas aeruginosa, located downstream of pqqE and encoding a putative peptidase, was shown to be involved in excretion of PQQ into the culture supernatant. This gene is cotranscribed with the pqqABCDE cluster and was named pqqH. A PA1990::Kmr mutant (VK3) did not show any effect in growth behaviour; however, in contrast to the wild-type, no excretion of PQQ into the culture supernatant was observed. The putative pqqF gene of P. aeruginosa was shown to be essential for PQQ biosynthesis. A pqqF::Kmr mutant did not grow aerobically on ethanol, because of its inability to produce PQQ. Transcription of the pqqABCDEH operon was induced upon aerobic growth on ethanol, 1-propanol, 1,2-propanediol and 1-butanol, while on glycerol, succinate and acetate, transcription was low. Transcription of the pqqABCDEH operon was also found upon anoxic growth on ethanol with nitrate as electron acceptor, but no PQQ was produced. Expression of the pqqABCDEH operon is regulated at the transcriptional level. In contrast, the pqqF operon appeared to be transcribed constitutively at a very low level under all growth conditions studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


cyt. c550 :

Cytochrome c550




Pyrroloquinoline quinone


Quinoprotein ethanol dehydrogenase




  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Arai H, Igarashi Y, Kodama T (1995) Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett 371:73–76

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FA, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (2002) Current protocols in molecular biology. John Wiley, New York

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 14:459–472

    Article  Google Scholar 

  • Cetin ET, Töreci K, Ang Ö (1965) Encapsulated Pseudomonas aeruginosa (Pseudomonas mucosus) strains. J Bacteriol 89:1432–1433

    CAS  PubMed  Google Scholar 

  • Diehl A, v Wintzingerode F, Görisch H (1998) Quinoprotein ethanol dehydrogenase of Pseudomonas aeruginosa is a homodimer. Eur J Biochem 257:409–419

    Article  CAS  PubMed  Google Scholar 

  • Dunn NW, Holloway BW (1971) Pleiotrophy of p-fluorophenylalanine-resistant and antibiotic hypersensitive mutants of Pseudomonas aeruginosa. Genet Res 18:185–197

    Article  CAS  PubMed  Google Scholar 

  • Farinha MA, Kropinski AM (1990) Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172:3496–3499

    CAS  PubMed  Google Scholar 

  • Felder M, Gupta A, Verma V, Kumar A, Qazi GN, Cullum J (2000) The pyrroloquinoline quinone synthesis genes of Gluconobacter oxydans. FEMS Microbiol Lett 193:231–236

    CAS  PubMed  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Article  CAS  PubMed  Google Scholar 

  • Geiger O, Görisch H (1987) Enzymatic determination of pyrroloquinoline quinone using crude membranes from Escherichia coli. Anal Biochem 164:418–423

    Article  CAS  PubMed  Google Scholar 

  • Gliese N, Khodaverdi V, Schobert M, Görisch H (2004) AgmR controls transcription of a regulon with several operons essential for ethanol oxidation in Pseudomonas aeruginosa ATCC 17933. Microbiology 150:1851–1857

    Article  CAS  PubMed  Google Scholar 

  • Goosen N, Horsman HP, Huinen RG, van de Putte P (1989) Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12. J Bacteriol 171:447–455

    CAS  PubMed  Google Scholar 

  • Goosen N, Huinen RG, van de Putte P (1992) A 24-amino-acid polypeptide is essential for the biosynthesis of the coenzyme pyrrolo-quinoline-quinone. J Bacteriol 174:1426–1427

    CAS  PubMed  Google Scholar 

  • Görisch H (2003) The ethanol oxidation system and its regulation in Pseudomonas aeruginosa. Biochim Biophys Acta 1647:98–102

    PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally- located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar U, Schobert M, Görisch H (2001) The Pseudomonas aeruginosa acsA gene, encoding an acetyl-CoA synthetase, is essential for growth on ethanol. Microbiology 147:2671–2677

    CAS  PubMed  Google Scholar 

  • Kretzschmar U, Rückert A, Jeoung J-H, Görisch H (2002) Malate:quinone oxidoreductase is essential for growth on ethanol or acetate in Pseudomonas aeruginosa. Microbiology 148:3839–3847

    CAS  PubMed  Google Scholar 

  • Magnusson OT, Toyama H, Saeki M, Rojas A, Reed JC, Liddington RC, Klinman JP, Schwarzenbacher R (2004) Quinone biogenesis: structure and mechanism of PqqC, the final catalyst in the production of pyrroloquinoline quinone. Proc Natl Acad Sci USA 101:7913–7918

    Article  CAS  PubMed  Google Scholar 

  • Mern DS, Ha S-W, Khodaverdi V, Gliese N, Görisch H (2009) A complex regulatory network controls ethanol oxidation in Pseudomonas aeruginosa: four levels of sensor kinases and response regulators. Microbiology (submitted)

  • Meulenberg JJ, Sellink E, Loenen WA, Riegman NH, van Kleef M, Postma PW (1990) Cloning of Klebsiella pneumoniae pqq genes and PQQ biosynthesis in Escherichia coli. FEMS Microbiol Lett 59:337–343

    Article  CAS  PubMed  Google Scholar 

  • Meulenberg JJ, Sellink E, Riegman NH, Postma PW (1992) Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol Gen Genet 232:284–294

    CAS  PubMed  Google Scholar 

  • Miller JM (1992) A short course in bacterial genetics. a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthi R, Lidstrom ME (1995) Transcriptional analysis of pqqD and study of the regulation of pyrroloquinoline quinone biosynthesis in Methylobacterium extorquens AM1. J Bacteriol 177:206–211

    CAS  PubMed  Google Scholar 

  • Reichmann P, Görisch H (1993) Cytochrome c550 from Pseudomonas aeruginosa. Biochem J 289:173–178

    CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (1998) Primer3. Code available at

  • Rupp M, Görisch H (1988) Purification, crystallisation and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa. Biol Chem Hoppe-Seyler 369:431–439

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schnider U, Keel C, Voisard C, Defago G, Haas D (1995) Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHA0: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. Appl Environ Microbiol 61:3856–3864

    CAS  PubMed  Google Scholar 

  • Schobert M (1999) Molekulargenetische Untersuchungen zum Ethanol-oxidierenden System in Pseudomonas aeruginosa. Ph.D. thesis. Technische Universität Berlin, Germany

  • Schobert M, Görisch H (1999) Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase. Microbiology 145:471–481

    Article  CAS  PubMed  Google Scholar 

  • Schobert M, Görisch H (2001) A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c550 of the ethanol-oxidation system in Pseudomonas aeruginosa. Microbiology 147:363–372

    CAS  PubMed  Google Scholar 

  • Schwartz E, Gerischer U, Friedrich B (1998) Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J Bacteriol 180:3197–3204

    CAS  PubMed  Google Scholar 

  • Schweizer HP, Klassen TR, Hoang T (1996) Improved methods for gene analysis in Pseudomonas. In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular biology of Pseudomonads. American Society for Microbiology, Washington, pp 229–237

    Google Scholar 

  • Smith AW, Iglewski BH (1989) Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res 17:10509

    Article  CAS  PubMed  Google Scholar 

  • Springer AL, Ramamoorthi R, Lidstrom ME (1996) Characterization and nucleotide sequence of pqqE and pqqF in Methylobacterium extorquens AM1. J Bacteriol 178:2154–2157

    CAS  PubMed  Google Scholar 

  • Staskawicz B, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulencegenes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794

    CAS  PubMed  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Toyama H, Chistoserdova L, Lidstrom ME (1997) Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate. Microbiology 143:595–602

    Article  CAS  PubMed  Google Scholar 

  • Toyama H, Fukumoto H, Saeki M, Matsushita K, Adachi O, Lidstrom ME (2002) PqqC/D, which converts a biosynthetic intermediate to pyrroloquinoline quinone. Biochem Biophys Res Commun 299:268–272

    Article  CAS  PubMed  Google Scholar 

  • Velterop JS, Sellink E, Meulenberg JJ, David S, Bulder I, Postma PW (1995) Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol 177:5088–5098

    CAS  PubMed  Google Scholar 

  • Winsor GL, Van Rossum T, Lo R, Khaira B, Whiteside MD, Hancock RE, Brinkman FS (2009) Pseudomonas genome database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res 37:D483–D488

    Article  CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Ye RW, Haas D, Ka JO, Krishnapillai V, Zimmermann A, Baird C, Tiedje JM (1995) Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol 177:3606–3609

    CAS  PubMed  Google Scholar 

  • Zhang M, Lidstrom ME (2003) Promoters and transcripts for genes involved in methanol oxidation in Methylobacterium extorquens AM1. Microbiology 149:1033–1040

    Article  CAS  PubMed  Google Scholar 

Download references


We thank Dr. E. Schwartz for the gift of plasmid pEDY305 and Dr. D. Jahn for the gift of plasmid pQF50. This work was supported by the Deutsche Forschungsgemeinschaft (GO 242/12-1).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Helmut Görisch.

Additional information

Communicated by Arnold Driessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gliese, N., Khodaverdi, V. & Görisch, H. The PQQ biosynthetic operons and their transcriptional regulation in Pseudomonas aeruginosa . Arch Microbiol 192, 1–14 (2010).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: