Skip to main content

Advertisement

Log in

Isolation of identical nitrilase genes from multiple bacterial strains and real-time PCR detection of the genes from soils provides evidence of horizontal gene transfer

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacterial enzymes capable of nitrile hydrolysis have significant industrial potential. Microbacterium sp. AJ115, Rhodococcus erythropolis AJ270 and AJ300 were isolated from the same location in England and harbour identical nitrile hydratase/amidase gene clusters. Strain AJ270 has been well studied due to its nitrile hydratase and amidase activity. R. erythropolis ITCBP was isolated from Denmark and carries a very similar nitrile hydratase/amidase gene cluster. In this study, an identical nitrilase gene (nit1) was isolated from the four strains, and the nitrilase from strain AJ270 cloned and expressed in Escherichia coli. Analysis of the recombinant nitrilase has shown it to be functional with activity demonstrated towards phenylacetonitrile. A real-time PCR TaqMan® assay was developed that allowed nit1 detection directly from soil enrichment cultures without DNA extraction, with nit1 detected in all samples tested. Real-time PCR screening of isolates from these soils resulted in the isolation of nit1 and also very similar nitrilase gene nit2 from a number of Burkholderia sp. The genes nit1 and nit2 have also been detected in many bacteria of different genera but are unstable in these isolates. It is likely that the genes were acquired by horizontal gene transfer and may be widespread in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Aspray TJ, Hansen SK, Burns RG (2005) A soil-based microbial biofilm exposed to 2, 4-D: bacterial community development and establishment of conjugative plasmid pJP4. FEMS Microbiol Ecol 54:317–327

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  • Barcellos FG, Menna P, Batista SD, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643

    Article  CAS  PubMed  Google Scholar 

  • Barrett CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Blakey AJ (1993) Isolation of nitrile utilizing microorganisms, physiological and biochemical investigation of Rhodococcus nov. sp. AJ270 and investigation of its nitrile hydratase. Dissertation, University of Sunderland, United Kingdom

  • Blakey AJ, Colby J, Williams E, O’Reilly C (1995) Regio-specific and stereo-specific nitrile hydrolysis by the nitrile hydratase from Rhodococcus AJ270. FEMS Microbiol Lett 129:57–61

    CAS  Google Scholar 

  • Cahill O (2004) The biochemical and genetic characterisation of nitrile metabolism by the novel isolate R. erythropolis ITCBP, Dissertation, Waterford Institute of Technology, Ireland

  • Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L, Reyes VL, Hauser et al (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103:15280–15287

  • Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42:73–91

    Article  CAS  PubMed  Google Scholar 

  • De la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    Article  PubMed  Google Scholar 

  • Doran JP, Duggan P, Masterson M, Turner PD, O’Reilly C (2005) Expression and purification of a recombinant enantioselective amidase. Protein Expr Purif 40:190–196

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    Article  CAS  PubMed  Google Scholar 

  • Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ERB (2006) Diversity and expression of nitrogenase genes (nifH) from ectomycorrhizas of Corsican pine (Pinus nigra). Environ Microbiol 8:2224–2230

    Article  CAS  PubMed  Google Scholar 

  • Kaul P, Banerjee A, Mayilraj S, Banerjee UC (2004) Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(-)-mandelic acid by new bacterial isolates. Tetrahedron Asymmetry 15:207–211

    Article  CAS  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1989) Nitrilase of Rhodococcus rhodochrous J1—purification and characterization. Eur J Biochem 182:349–356

    Article  CAS  PubMed  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996a) A novel gene cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low molecular mass nitrile hydratase (L-NHase) induced by its reaction product. J Biol Chem 271:15796–15802

    Article  CAS  PubMed  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996b) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc Natl Acad Sci USA 93:4267–4272

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Fan L, Chang Y, Ma J, Yu H, Shen Z (2008) Gene cloning, overexpression, and characterization of the nitrilase from Rhodococcus rhodochrous tg1-A6 in E. coli. Appl Biochem Biotechnol. doi:10.1007/s12010-008-8324-y

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  PubMed  Google Scholar 

  • Nagasawa T, Mauger J, Yamada H (1990) A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3—purification and characterization. Eur J Biochem 194:765–772

    Article  CAS  PubMed  Google Scholar 

  • O’Mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O’Reilly C (2005) Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis strains AJ720 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie Van Leeuwenhoek 87:221–232

    Article  PubMed  Google Scholar 

  • O’Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes—a comparative study. J Appl Microbiol 95:1161–1174

    Article  PubMed  Google Scholar 

  • Raphael BH, Andreadis JD (2007) Real-time PCR detection of the nontoxic nonhemagglutinin gene as a rapid screening method for bacterial isolates harboring the botulinum neurotoxin (A-G) gene complex. J Microbiol Methods 71:343–346

    Article  CAS  PubMed  Google Scholar 

  • Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E et al (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70:2429–2436

    Article  CAS  PubMed  Google Scholar 

  • Simoes LC, Simoes M, Vieira MJ (2007) Biofilm interactions between distinct bacterial genera isolated from drinking water. Appl Environ Microbiol 73:6192–6200

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Sharma R, Tewari N, Geetanjali, Rawat DS (2006) Nitrilase and its application as a ‘green’ catalyst. Chem Biodivers 3:1279–1287

  • Snell D, Colby J (1999) Enantioselective hydrolysis of racemic ibuprofen amide to s-(+)-ibuprofen by Rhodococcus AJ270. Enzyme Microb Technol 24:160–163

    Article  CAS  Google Scholar 

  • Song LY, Yuan HJ, Coffey L, Doran J, Wang MX, Qian SJ, O’Reilly C (2008) Efficient expression in E. coli of an enantioselective nitrile hydratase from Rhodococcus erythropolis. Biotechnol Lett 30:755–762

    Article  CAS  PubMed  Google Scholar 

  • Sun YM, Polishchuk EA, Radoja U, Cullen WR (2004) Identification and quantification of arsC genes in environmental samples by using real-time PCR. J Microbiol Methods 58:335–349

    Article  CAS  PubMed  Google Scholar 

  • Tambling K (2007) Isolation and analysis of novel cyano tolerant/degrading microorganisms. Dissertation, Waterford Institute of Technology

  • Thuku RN, Weber BW, Varsani A, Sewell BT (2007) Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J 274:2099–2108

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  PubMed  Google Scholar 

  • Trabelsi D, Pini F, Aouani ME, Bazzicalupo M, Mengoni A (2009) Development of real-time PCR assay for detection and quantification of Sinorhizobium meliloti in soil and plant tissue. Lett Appl Microbiol 48:355–361

    Article  CAS  PubMed  Google Scholar 

  • Van Passel MWJ, Bart A, Luyf ACM, Van Kampen AHC, Van der Ende A (2006) Compositional discordance between prokaryotic plasmids and host chromosomes. BMC Genomics 7:26

    Google Scholar 

  • Venkatesan AM, Agarwal A, Abe T, Ushirogochi H, Ado M, Tsuyoshi et al (2008) 5,5,6-fused tricycles bearing imidazole and pyrazole 6-methylidene penems as broad-spectrum inhibitors of beta-lactamases. Bioorg Med Chem 16:1890–1902

  • Wang JY, Wang DX, Zheng QY, Huang ZT, Wang MX (2007) Nitrile biotransformations for the efficient synthesis of highly enantiopure 1-arylaziridine-2-carboxylic acid derivatives and their stereoselective ring-opening reactions. J Org Chem 72:2040–2045

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Fujimatsu I, Komatsu K (1992) Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC-8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73:425–430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Irish Research Council for Science, Engineering and Technology (EMBARK Initiative), Technological Sector Research (STRANDIII) and an SGM Summer Vocation Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Coffey.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, L., Clarke, A., Duggan, P. et al. Isolation of identical nitrilase genes from multiple bacterial strains and real-time PCR detection of the genes from soils provides evidence of horizontal gene transfer. Arch Microbiol 191, 761–771 (2009). https://doi.org/10.1007/s00203-009-0507-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0507-6

Keywords

Navigation