Archives of Microbiology

, Volume 191, Issue 8, pp 669–673 | Cite as

Resistance of the cell wall to degradation is a critical parameter for isolation of high quality RNA from natural isolates of Bacillus subtilis

  • Jean-Sébastien Guez
  • François Coutte
  • Anne-Sophie Drucbert
  • Nour-Eddine Chihib
  • Pierre-Marie Danzé
  • Philippe Jacques
Short Communication

Abstract

Natural isolates of Bacillus subtilis are known for their ability to produce a large panel of bioactive compounds. Unfortunately, their recalcitrance to conventional molecular techniques limits their transcript studies. In this work, difficulties to isolate RNA attributed to the cell wall were overcome, finally authorising powerful RT-PCR’s.

Keywords

RNA isolation Bacillus subtilis Natural strain Cell wall Transcript analysis RT-PCR 

References

  1. Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC 6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci 96(23):13294–13299PubMedCrossRefGoogle Scholar
  2. Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 73:3490–3496PubMedCrossRefGoogle Scholar
  3. Errington J (1990) Gene cloning techniques. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 175–220Google Scholar
  4. Guez JS, Chenikher S, Cassar JP, Jacques P (2007) Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J Biotechnol 131:67–75PubMedCrossRefGoogle Scholar
  5. Guez JS, Muller CH, Büchs J, Jacques P (2008) Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC 6633. J Biotechnol 134(1–2):121–126PubMedCrossRefGoogle Scholar
  6. Hambraeus G, von Wachenfeldt C, Hederstedt L (2003) Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs. Mol Genet Genomics 269:706–714PubMedCrossRefGoogle Scholar
  7. Jahn CE, Charkowski AO, Willis DK (2008) Evaluation of isolation methods and RNA integrity for bacterial RNA quantitation. J Microbiol Methods 75(2):318–324PubMedCrossRefGoogle Scholar
  8. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584PubMedCrossRefGoogle Scholar
  9. Leenders F, Stein TH, Kablitz B, Franke P, Vater J (1999) Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix assisted laser-desorption/ionization mass spectrometry of intact cells. Rapid Commun Mass Spectrom 13:943–949CrossRefGoogle Scholar
  10. Moeller R, Horneck G, Rettberg P, Mollenkopf HJ, Stackebrandt E, Nicholson WL (2006) A method for extracting RNA from dormant and germinating Bacillus subtilis strain 168 endospores. Curr Microbiol 53:227–231PubMedCrossRefGoogle Scholar
  11. Oh ET, So JS (2003) A rapid method for RNA preparation from Gram-positive bacteria. J Microbiol Methods 52:395–398PubMedCrossRefGoogle Scholar
  12. Putzer H, Gendron N, Grunberg-Manago M (1992) Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J 11:3117–3127PubMedGoogle Scholar
  13. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7(3)Google Scholar
  14. Stein T, Düsterhus S, Stroh A, Entian KD (2004) Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol 70:2349–2353PubMedCrossRefGoogle Scholar
  15. Van Dessel W, Van Mellaert L, Geukens N, Lammertyn E, Anne J (2004) Isolation of high quality RNA from Streptomyces. J Microbiol Methods 58:135–137PubMedCrossRefGoogle Scholar
  16. Willimsky G, Bang H, Fisher G, Marahiel MA (1992) Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 174(20):6326–6335PubMedGoogle Scholar
  17. Zeigler DR, Prágai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Bai R, Wyss M, Perkins JB (2008) The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190(21):6983–6995PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jean-Sébastien Guez
    • 1
  • François Coutte
    • 1
  • Anne-Sophie Drucbert
    • 2
  • Nour-Eddine Chihib
    • 1
  • Pierre-Marie Danzé
    • 2
  • Philippe Jacques
    • 1
  1. 1.Laboratoire ProBioGEM, UPRES-EA 1026, Polytech-Lille, IUT AUniversité des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  2. 2.Faculté de Médecine H. Warembourg IFR114-IMPRT (functional genomic platform)LilleFrance

Personalised recommendations