Skip to main content
Log in

Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 06 February 2009

Abstract

The influence of endogenous root nodules phenolic acids on indoleacetic acid (IAA) production by its symbiont (Rhizobium) was examined. The root nodules contain higher amount of IAA and phenolic acids than non-nodulated roots. Presence of IAA metabolizing enzymes, IAA oxidase, peroxidase, and polyphenol oxidase indicate the metabolism of IAA in the nodules and roots. Three most abundant endogenous root nodule phenolic acids (protocatechuic acid, 4-hydroxybenzaldehyde and p-coumaric acid) have been identified and their effects on IAA production by the symbiont have been studied in l-tryptophan supplemented yeast extract basal medium. Protocatechuic acid (1.5 μg ml−1) showed maximum stimulation (2.15-fold over control) of IAA production in rhizobial culture. These results indicate that the phenolic acids present in the nodule might serve as a stimulator for IAA production by the symbiont (Rhizobium).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983

    Article  CAS  Google Scholar 

  • Blum U, Stamen KL, Flint LJ, Shafer SR (2000) Induction and selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J Chem Ecol 26:2059–2078

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty D, Mandal SM (2008) Fractional changes in phenolic acids composition in root nodules of Arachis hypogaea L. Plant Growth Regul 55:159–163

    Article  CAS  Google Scholar 

  • Chakraborty D, Mandal SM, Chakraborty J, Bhattacharyya PK, Bandyopadhyay A, Mitra A, Gupta K (2007) Antimicrobial activity of leaf extracts of Basilicum polystachyon (L) Moench. Indian J Exp Biol 45:744–748

    PubMed  CAS  Google Scholar 

  • Christophoridou S, Dais P, Tseng LH, Spraul M (2005) Separation and identification of phenolic compounds in olive oil by coupling high-performance liquid chromatography with post column solid-phase extraction to nuclear magnetic resonance spectroscopy (LC-SPE-NMR). J Agric Food Chem 53:4667–4679

    Article  PubMed  CAS  Google Scholar 

  • deBilly F, Grosjean C, May S, Bennett M, Cullimore JV (2001) Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol Plant Microbe Interact 14:267–277

    Article  CAS  Google Scholar 

  • Fedorova E, Redondo FJ, Koshiba T, Pueyo JJ M, de Felipe MR, Lucas MM (2005) Aldehyde oxidase (AO) in the root nodules of Lupinus albus and Medicago truncatula: identification of AO in meristematic and infection zones. Mol Plant Microbe Interact 18:405–413

    Article  PubMed  CAS  Google Scholar 

  • Geurts R, Fedorova E, Bisseling T (2005) Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Basu PS (2006) Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol Res 161:362–366

    Article  PubMed  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indole-acetic acid. Plant Physiol 26:192–195

    Article  PubMed  CAS  Google Scholar 

  • Hassan SSM (1975) Spectrophotometric method for simultaneous determination of tryptophan and tyrosine. Anal Chem 47:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Hirsch A (1992) Developmental biology of legume nodulation. New Phytol 122:211–237

    Article  Google Scholar 

  • Hunter WJ (1989) Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plant 76:31–36

    Article  CAS  Google Scholar 

  • Jensen JB, Egsgaard H, Onckelen HV, Jochimsen BU (1995) Catabolism of indole-3-acetic acid and 4- and 5- chloroindole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 177:5762–5766

    PubMed  CAS  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenol oxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  PubMed  CAS  Google Scholar 

  • Kefeli VI, Dashek WV (1984) Non-hormonal stimulators and inhibitors of plant growth and development. Biol Rev 59:273–288

    Article  CAS  Google Scholar 

  • Mandal SM, Mondal KC, Dey S, Pati BR (2007a) Optimization of cultural and nutritional conditions for indole-3-acetic acid production by a Rhizobium sp. isolated from root nodules of Vigna mungo (L.) Hepper. Res J Microbiol 2:239–246

    Article  CAS  Google Scholar 

  • Mandal SM, Ray B, Dey S, Pati BR (2007b) Production and composition of extracellular polysaccharide synthesized by a Rhizobium isolate of Vigna mungo (L.) Hepper. Biotechnol Lett 29:1271–1275

    Article  PubMed  CAS  Google Scholar 

  • Nitsch JP (1955) Free auxin and free tryptophan in strawberry. Plant Physiol 30:33–39

    Article  PubMed  CAS  Google Scholar 

  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, Greef JD, Schell J, Onckelen HV (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 282:53–55

    Article  PubMed  CAS  Google Scholar 

  • Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635

    Article  CAS  Google Scholar 

  • Schneider EA, Wightman F (1974) Metabolism of auxin in higher plants. Annu Rev Plant Physiol 25:487–513

    Article  CAS  Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57

    Article  PubMed  CAS  Google Scholar 

  • Seneviratne G, Jayasinghearachchi HS (2003) Phenolic acids: possible agents of modifying N2-fixing symbiosis through rhizobial alteration. Plant Soil 252:385–395

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lameula-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteau reagent. Method Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Sinha BK, Basu PS (1981) Indole-3-acetic acid metabolism in root nodules of Pongamia pinnata (L.) Pierre. Biochem Physiol Pflanz 176:218–227

    CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 10:1153–1161

    Article  Google Scholar 

  • Van Rossum D, Schuuramns FB, Gillis M, Muyotcha A, van Versveld HW, Stouthamer AH, Boogerd FC (1995) Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl Environ Microbiol 61:1599–1609

    PubMed  Google Scholar 

  • Vance CP (1978) Comparative aspects of root and root nodule secondary metabolism in alfalfa. Phytochemistry 17:1889–1891

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananta Ghosh.

Additional information

Communicated by Ursula Priefer.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00203-009-0461-3

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6414 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, S., Mandal, M., Das, A. et al. Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids. Arch Microbiol 191, 389–393 (2009). https://doi.org/10.1007/s00203-008-0455-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0455-6

Keywords

Navigation