Skip to main content
Log in

Comparative genomic study of spo0E family genes and elucidation of the role of Spo0E in Bacillus anthracis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The propensity of bacterium to sporulate or retain the vegetative form depends on the amount of phosphorylated Spo0A (Spo0A-P), regulated by Spo0E multigene family of phosphatases (Spo0E, YisI and YnzD). Phylogenetic analysis revealed that Spo0E multigene family of phosphatases (SMFP) descends in two distinct clades of aerobic (Bacillus cluster) and anaerobic (Clostridia cluster) sporulating bacteria. High sequence conservation within species gives a notion that these members could have evolved through lineage and species-specific duplication event. Of the five genes in Bacillus cereus group, three are pathogen specific, and their synteny suggests that these paralogs could be involved in the regulation of amino acid metabolism and its transport. Overexpression of B. subtilis Spo0E, an ortholog of SMFP members in B. anthracis (BAS1251), resulted in sporulation deficient phenotype in B. anthracis. Banthracis Spo0A-P binds to a consensus DNA sequence 5′-TGNCGAA-3′ (‘0A-like box’) and loses its DNA binding ability following treatment with B. subtilis Spo0E. Thus, B. subtilis Spo0E acts on B. anthracis Spo0A-P and, therefore could complement the function of BAS1251. Further, since ‘0A-like box’ are present in the promoter region of abrB gene, a known regulator of anthrax toxin gene expression, cross talk among SMFP members and Spo0A-P–AbrB could regulate the expression of anthrax toxin genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SMFP:

spo0E multigene family of phosphatases

HMM:

Hidden Markov model

LB:

Luria–Bertani

N t :

Number of CFU after heat treatment

N 0 :

Number of CFU before heat treatment

EPPS:

3-[4-(2-Hydroxyethyl)-1-piperazinyl] propanesulfonic acid

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhasng Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Appleby JL, Parkinson JS, Bourret RB (1996) Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86:845–848

    Article  PubMed  CAS  Google Scholar 

  • Behravan J, Chirakkal H, Masson A, Moir A (2000) Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J Bacteriol 182:1987–1994

    Article  PubMed  CAS  Google Scholar 

  • Bongiorni C, Stoessel R, Shoemaker D, Perego M (2006) Rap phosphatase of virulence plasmid pXO1 inhibits Bacillus anthracis sporulation. J Bacteriol 188:487–498

    Article  PubMed  CAS  Google Scholar 

  • Bongiorni C, Stoessel R, Perego M (2007) Negative regulation of Bacillus anthracis sporulation by the Spo0E family of phosphatase. J Bacteriol 189:2637–2645

    Article  PubMed  CAS  Google Scholar 

  • Brunsing RL, La Clair C, Tang S, Chiang C, Hancock LE, Perego M, Hoch JA (2005) Characterization of sporulation histidine kinases of Bacillus anthracis. J Bacteriol 187:6972–6981

    Article  PubMed  CAS  Google Scholar 

  • Burbulys D, Trach KA, Hoch JA (1991) Initiation of sporulation in Bacillus subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Kumar A, Wyman TH, Moran CP Jr (2006) Spo0A-dependent activation of an extended-10 region promoter in Bacillus subtilis. J Bacteriol 188:1411–1418

    Article  PubMed  CAS  Google Scholar 

  • Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23:324–328

    Article  PubMed  CAS  Google Scholar 

  • Diaz AR, Stephenson S, Green JM, Levdikov VM, Wilkinson AJ, Perego M (2008) Functional role for a conserved aspartate in the Spo0E signature motif involved in the dephosphorylation of the Bacillus subtilis sporulation regulator Spo0A. J Biol Chem 283:2962–2972

    Article  PubMed  CAS  Google Scholar 

  • Durre P, Hollergschwandner C (2004) Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10:69–74

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  CAS  Google Scholar 

  • Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    Article  PubMed  CAS  Google Scholar 

  • Fawcett P, Eichenberger P, Losick R, Youngman P (2000) The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci USA 97:8063–8068

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP: Phylogeny Inference Package (version 3.6). University of Washington, Seattle

    Google Scholar 

  • Fraser-Liggett CM (2005) Insights on biology and evolution from microbial genome sequencing. Genome Res 15:1603–1610

    Article  PubMed  CAS  Google Scholar 

  • Gevers D, Vandepoele K, Simillon C, Van de Peer Y (2004) Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends Microbiol 12:148–154

    Article  PubMed  CAS  Google Scholar 

  • Grenha R, Rzechorzek NJ, Brannigan JA, de Jong RN, Ab E, Diercks T, Truffault V, Ladds JC, Fogg MJ, Bongiorni C, Perego M, Kaptein R, Wilson KS, Folkers GE, Wilkinson AJ (2006) Structural characterization of Spo0E-like protein-aspartic acid phosphatases that regulate sporulation in bacilli. J Biol Chem 281:37993–38003

    Article  PubMed  CAS  Google Scholar 

  • Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184:3586–3597

    Article  PubMed  CAS  Google Scholar 

  • Hoch JA (1993) Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol 47:441–465

    Article  PubMed  CAS  Google Scholar 

  • Huang IH, Waters M, Grau RR, Sarker MR (2004) Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol Lett 233:233–240

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa S, Core L, Perego M (2002) Biochemical characterization of aspartyl phosphate phosphatase interaction with a phosphorylated response regulator and its inhibition by a pentapeptide. J Biol Chem 277:20483–20489

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Shao W, Perego M, Hoch JA (2000) Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38:535–542

    Article  PubMed  CAS  Google Scholar 

  • Kennelly PJ (2001) Protein phosphatases-a phylogenetic perspective. Chem Rev 101:2291–2312

    Article  PubMed  CAS  Google Scholar 

  • Koehler TM, Dai Z, Kaufman-Yarbray M (1994) Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two promoters. J Bacteriol 176:586–595

    PubMed  CAS  Google Scholar 

  • Koide A, Perego M, Hoch JA (1999) ScoC regulates peptide transport and sporulation initiation in Bacillus subtilis. J Bacteriol 181:4114–4117

    PubMed  CAS  Google Scholar 

  • Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338

    Article  PubMed  CAS  Google Scholar 

  • Korbel JO, Jensen LJ, von Mering C, Bork P (2004) Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nat Biotechnol 22:911–917

    Article  PubMed  CAS  Google Scholar 

  • Ladds JC, Muchová K, Blaskovic D, Lewis RJ, Brannigan JA, Wilkinson AJ, Barák I (2003) The response regulator Spo0A from Bacillus subtilis is efficiently phosphorylated in Escherichia coli. FEMS Microbiol Lett 223:153–157

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Tan K, Stormo GD (2003) Computational identification of the Spo0A-phosphate regulon that is essential for the cellular differentiation and development in Gram positive spore-forming bacteria. Nucleic Acids Res 31:6891–6903

    Article  PubMed  CAS  Google Scholar 

  • Majdalani N, Gottesman S (2005) The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379–405

    Article  PubMed  CAS  Google Scholar 

  • Mattoo AR, Saif Zaman M, Dubey GP, Arora A, Narayan A, Jailkhani N, Rathore K, Maiti S, Singh Y (2008) Spo0B of Bacillus anthracis—a protein with pleiotropic functions. FEBS J 275:739–752

    Article  PubMed  CAS  Google Scholar 

  • Narayan A, Sachdeva P, Sharma K, Saini AK, Tyagi AK, Singh Y (2007) Serine threonine protein kinases of mycobacterial genus: phylogeny to function. Physiol Genomics 29:66–75

    PubMed  CAS  Google Scholar 

  • Notebaart RA, Huynen MA, Teusink B, Siezen RJ, Snel B (2005) Correlation between sequence conservation and the genomic context after gene duplication. Nucleic Acids Res 33:6164–6171

    Article  PubMed  CAS  Google Scholar 

  • Notredame C, Higgins D, Heringa J (2000) T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Ohlsen KL, Grimsley JK, Hoch JA (1994) Deactivation of the sporulation transcription factor Spo0A by the Spo0E protein phosphatase. Proc Natl Acad Sci USA 91:1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96:2896–2901

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Paredes CJ, Alsaker KV, Papoutsakis ET (2005) A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3:969–978

    Article  PubMed  CAS  Google Scholar 

  • Perego M (1998) Kinase-phosphatase competition regulates Bacillus subtilis development. Trends Microbiol 6:366–370

    Article  PubMed  CAS  Google Scholar 

  • Perego M (2001) A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Mol Microbiol 42:133–143

    Article  PubMed  CAS  Google Scholar 

  • Perego M, Hoch JA (1987) Isolation and sequence of the spo0E gene: its role in initiation of sporulation in Bacillus subtilis. Mol Microbiol 1:125–132

    Article  PubMed  CAS  Google Scholar 

  • Perego M, Hoch JA (1991) Negative regulation of Bacillus subtilis sporulation by the spo0E gene product. J Bacteriol 173:2514–2520

    PubMed  CAS  Google Scholar 

  • Perego M, Cole SP, Burbulys D, Trach K, Hoch JA (1989) Characterization of the gene for a protein kinase, which phosphorylates the sporulation-regulatory proteins Spo0A and Spo0F of Bacillus subtilis. J Bacteriol 171:6187–6196

    PubMed  CAS  Google Scholar 

  • Phillips ZE, Strauch MA (2002) Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci 59:392–402

    Article  PubMed  CAS  Google Scholar 

  • Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, Holtzapple EK, Okstad OA, Helgason E, Rilstone J, Wu M, Kolonay JF, Beanan MJ, Dodson RJ, Brinkac LM, Gwinn M, DeBoy RT, Madpu R, Daugherty SC, Durkin AS, Haft DH, Nelson WC, Peterson JD, Pop M, Khouri HM, Radune D, Benton JL, Mahamoud Y, Jiang L, Hance IR, Weidman JF, Berry KJ, Plaut RD, Wolf AM, Watkins KL, Nierman WC, Hazen A, Cline R, Redmond C, Thwaite JE, White O, Salzberg SL, Thomason B, Friedlander AM, Koehler TM, Hanna PC, Kolstø AB, Fraser CM (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86

    Article  PubMed  CAS  Google Scholar 

  • Saile E, Koehler TM (2002) Control of anthrax toxin gene expression by the transition state regulator abrB. J Bacteriol 184:370–380

    Article  PubMed  CAS  Google Scholar 

  • Saini AK, Maithal K, Chand P, Chowdhury S, Vohra R, Goyal A, Dubey GP, Chopra P, Chandra R, Tyagi AK, Singh Y, Tandon V (2004) Nuclear localization and in situ DNA damage by Mycobacterium tuberculosis nucleoside-diphosphate kinase. J Biol Chem 279:50142–50149

    Article  PubMed  CAS  Google Scholar 

  • Santoyo G, Romero D (2005) Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol Rev 29:169–183

    Article  PubMed  CAS  Google Scholar 

  • Shafikhani SH, Leighton T (2004) AbrB and Spo0E control the proper timing of sporulation in Bacillus subtilis. Curr Microbiol 48:262–269

    Article  PubMed  CAS  Google Scholar 

  • Singh Y, Chaudhary VK, Leppla SH (1989) A deleted variant of Bacillus anthracis protective antigen is non-toxic and blocks anthrax toxin action in vivo. J Biol Chem 264:19103–19107

    PubMed  CAS  Google Scholar 

  • Stephenson K, Hoch JA (2002) Evolution of signaling in the sporulation phosphorelay. Mol Microbiol 46:297–304

    Article  PubMed  CAS  Google Scholar 

  • Stephenson K, Lewis RJ (2005) Molecular insights into the initiation of sporulation in Gram positive bacteria: new technologies for an old phenomenon. FEMS Microbiol Rev 29:281–301

    Article  PubMed  CAS  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  PubMed  CAS  Google Scholar 

  • Strauch M, Webb V, Spiegelman G, Hoch JA (1990) The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci USA 87:1801–1805

    Article  PubMed  CAS  Google Scholar 

  • Weiner MA, Read TD, Hanna PC (2003) Identification and characterization of the gerH operon of Bacillus anthracis endospores: a differential role for purine nucleosides in germination. J Bacteriol 185:1462–1464

    Article  PubMed  CAS  Google Scholar 

  • Worner K, Szurmant H, Chiang C, Hoch JA (2006) Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum. Mol Microbiol 59:1000–1012

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Msadek T, Zapf J, Madhusudan, Hoch JA, Varughese KI (2002) DNA complexed structure of the key transcription factor initiating development in sporulating bacteria. Structure (Cambridge) 10:1041–1050

Download references

Acknowledgments

Financial support by Council of Scientific and Industrial Research (NWP 0038) is acknowledged. Gyanendra P. Dubey was supported by CSIR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogendra Singh.

Additional information

Communicated by Jorge Membrillo-Hernandez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, G.P., Narayan, A., Mattoo, A.R. et al. Comparative genomic study of spo0E family genes and elucidation of the role of Spo0E in Bacillus anthracis . Arch Microbiol 191, 241–253 (2009). https://doi.org/10.1007/s00203-008-0446-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0446-7

Keywords

Navigation