Skip to main content
Log in

Encystment of Azotobacter nigricans grown diazotrophically on kerosene as sole carbon source

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Encystment of Azotobacter nigricans was induced by its diazotrophic cultivation on kerosene. Its growth and nitrogenase activity were affected by kerosene in comparison to cultures grown on sucrose. Electron microscopy of vegetative cells showed that when nitrogenase activity was higher and the poly-β-hydroxybutyrate granules were not present to a significant extent, peripheral bodies were abundant. After 8 days of culture on kerosene, the presence of cysts with intracellular bunches of poly-β-hydroxybutyrate granules was observed. Germination of cysts bears germinating multicelled yet unbroken capsule cysts with up to three cells inside. This is the first report of encystment induction of Azotobacter species grown on kerosene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Balis C, Chatzipavlidis J, Fluori F (1996) Olive mill waste as a substrate for nitrogen fixation. Int Biodeter Biodegr 38:169–178

    Article  CAS  Google Scholar 

  • Berleman EJ, Bauer CE (2004) Characterization of cyst cell formation in the purple photosynthetic bacterium Rhodospirillum centenum. Microbiol 150:383–390

    Article  CAS  Google Scholar 

  • Cagle GD, Vela GR (1971) Giant cysts and cysts with multiple central bodies in Azotobacter vinelandii. J Bacteriol 107:315–319

    PubMed  CAS  Google Scholar 

  • Campos ME, Martínez- Salazar JM, Lloret L, Moreno S, Núñez C, Espín G, Soberón-Chávez G (1996) Characterization of the gene coding for GDP- mannose dehydrogenase (algD) from Azotobacter vinelandii. J Bacteriol 178:1793–1799

    PubMed  CAS  Google Scholar 

  • Copeland L, Feng L, Tabrett C (2006) Polyhydroxybutyrate in nitrogen-fixing symbioses. In: Pedrosa FO (ed) Nitrogen fixation: from molecules to crop productivity. Kluwer Academic Publishers, Netherlands, pp 377–378

    Google Scholar 

  • Espín G (2003) Biología de Azotobacter vinelandii. In: Martínez Romero E, Martínez Romero JC (eds) Microbios en linea. http://www.microbiologia.org.mx/microbiosenlinea/index.php

  • Fang Y, Al-Assaf S, Phillips GO, Nishinari K, Funami T, Williams PA (2008) Binding behaviour of calcium to polyuronates: comparison of pectin with alginate. Carbohydr Polym 72:334–341

    Article  CAS  Google Scholar 

  • Garrity MG, Bell AJ, Lilburn T (2005) Order IX Pseudomonadales Orla-Jensen 1921, 270 AL. In: Garrity MG (ed) Bergey’s Manual of Systematic Bacteriology Part two. The Proteobacteria, 2nd edn. Springer, USA, pp 384–402

    Google Scholar 

  • Haahtela K, Kari K, Sundman V (1983) Nitrogenase activity (acetylene reduction) of root-associated, cold-climate Azospirillum, Enterobacter, Klebsiella and Pseudomonas species during growth on various carbon sources and at various partial pressures of oxygen. Appl Environ Microbiol 45:563–570

    PubMed  CAS  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y (2003) Involvement of the reserve material poly-β-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 69:3244–3250

    Article  PubMed  CAS  Google Scholar 

  • Lin LP, Sadoff HL (1968) Encystment and polymer production by Azotobacter vinelandii in the presence of β-hydroxybutyrate. J Bacteriol 95:2336–2343

    PubMed  CAS  Google Scholar 

  • Mackenzie KA, Macrae IC (1972) Tolerance of the nitrogen-fixing system of Azotobacter vinelandii for four commonly used pesticides. Antonie van Leeuwenhoek 38:529–535

    Article  CAS  Google Scholar 

  • Mulder EG, Brotonegoro S (1974) Free-living heterotrophic nitrogen-fixing bacteria. In: Quispel A (ed) The biology of nitrogen fixation. American Elsevier Publishing Company, NY, pp 38–85

    Google Scholar 

  • Núñez C, Moreno S, Soberón-Chávez G, Espín G (1999) The Azotobacter vinelandii response regulator AlgR is essential for cyst formation. J Bacteriol 181:141–148

    PubMed  Google Scholar 

  • Onwurah INE (1999) Role of diazotrophic bacteria in the bioremediation of crude oil-polluted soil. J Chem Technol Biotechnol 74:957–964

    Article  CAS  Google Scholar 

  • Oppenheim J, Marcus LL (1970) Correlation of ultrastructure in Azotobacter vinelandii with nitrogen source for growth. J Bacteriol 101:286–291

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Manna Anupman, Amal KP (1997) Induction of encystment and poly-β-hydroxybutyric acid production by Azotobacter chroococcum MAL-201. Curr Microbiol 35:327–330

    Article  PubMed  CAS  Google Scholar 

  • Papadelli M, Roussis A, Papadopoulou K, Venieraki A, Chatzipavlidis I, Katinakis P, Ballis K (1996) Biochemical and molecular characterization of an Azotobacter vinelandii strain with respect to its ability to grow and fix nitrogen in olive mill wastewater. Int Biodeter Biodegr 38:179–181

    Article  CAS  Google Scholar 

  • Pérez VJ, Poggi VHM, Calva CG, Ríos LE, Rodríguez LE, Rodríguez VR, Ferrera-Cerrato R, Esparza GF (2000) Nitrogen–fixing bacteria capable of utilizing kerosene hydrocarbons as a sole carbon source. Water Sci Technol 42:407–410

    Google Scholar 

  • Pérez VJ, Poggi VHM, Calva CG, Albores A, Rodríguez LE, Rodríguez VR, Esparza GF, Ferrera-Cerrato R (2001) Azomonas: a NFB capable of using kerosene as a carbon source. In: Magar VS, von Fahnestock FM, Leeson A (eds) Ex situ biological treatment technologies 6/6. Battelle Press, USA, pp 219–226. ISBN 1-57477-116-7

  • Postgate JR (1971) The acetylene reduction test for nitrogen fixation. In: Norris JR, Ribbons DW (eds) Methods in microbiology, 6B edn. Academic Press London, UK, pp 343–356

    Google Scholar 

  • Quagliano CJ, Miyazaki SS (1999) Biosynthesis of poly-β-hydroxybutyrate and exopolysaccharides on Azotobacter chroococcum strain 6B utilizing simple and complex carbon sources. Appl Biochem Biotechnol 82:199–208

    Article  PubMed  CAS  Google Scholar 

  • Rennie RJ (1981) A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14

    Article  PubMed  CAS  Google Scholar 

  • Reusch RN, Sadoff HL (1981) Lipid metabolism during encystment of Azotobacter vinelandii. J Bacteriol 145:889–895

    PubMed  CAS  Google Scholar 

  • Reusch RN, Sadoff HL (1983) Novel lipid components of the Azotobacter vinelandii cyst membrane. Nature 302:268–270

    Article  PubMed  CAS  Google Scholar 

  • Sabra W, Zeng AP, Deckwer WD (2001) Bacterial alginate: physiology, product quality and process aspects. Appl Microbiol Biotechnol 56:315–325

    Article  PubMed  CAS  Google Scholar 

  • Sadoff HL (1975) Encystment and germination in Azotobacter vinelandii. Bacter Rev 39:516–539

    CAS  Google Scholar 

  • Segura D, Cruz T, Espín G (2003) Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-β-hydroxybutyrate synthesis. Arch Microbiol 179:437–443

    PubMed  CAS  Google Scholar 

  • Senior PJ, Beech GA, Ritchiet GAF, Dawes EA (1972) The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem J 128:1193–1201

    PubMed  CAS  Google Scholar 

  • Stevenson LH, Socolofsky MD (1972) Encystment of Azotobacter vinelandii in liquid culture. Antonie van Leeuwenhoek 38:605–616

    Article  Google Scholar 

  • Vela GR, Cagle GD, Holmgren PR (1970) Ultrastructure of Azotobacter vinelandii. J Bacteriol 104:933–939

    PubMed  CAS  Google Scholar 

  • Watkinson RJ, Morgan P (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1:79–92

    Article  PubMed  CAS  Google Scholar 

  • Wyss O, Newmann MG, Socolofsky MD (1961) Development and germination of the Azotobacter cyst. J Biophys Biochem Cytol 10:555–565

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special acknowledgment is given to Victoria Teresita Velásquez Martínez and Ma. De Lourdes Rojas for their technical assistance in the microscopic studies. The first author, Gabriela Garcia Esquivel, acknowledges a doctoral fellowship (124460) from CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando José Esparza-García.

Additional information

Communicated by Mary Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Esquivel, G., Calva-Calva, G., Ferrera-Cerrato, R. et al. Encystment of Azotobacter nigricans grown diazotrophically on kerosene as sole carbon source. Arch Microbiol 191, 275–281 (2009). https://doi.org/10.1007/s00203-008-0444-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0444-9

Keywords

Navigation