Archives of Microbiology

, Volume 191, Issue 1, pp 63–71 | Cite as

Differentiated pellicle organization and lipopeptide production in standing culture of Bacillus subtilis strains

  • Marlène Chollet-Imbert
  • Frédérique Gancel
  • Christian Slomianny
  • Philippe Jacques
Original Paper

Abstract

Pellicle formation and lipopeptide production was analysed in standing cultures of different Bacillus subtilis strains producing two or three families of lipopeptides. Despite its ability to produce surfactin, B. Subtilis ATCC 6633 was unable to form stable pellicle at air–water interface. For the ATTC 21332 and ATCC 9943 strains, it was shown for the first time that the lipopeptides were also produced in standing cultures at productivities similar or lower than those obtained when the culture medium is agitated. A differentiated behaviour was observed between these strains in repetitive batch cultures. B. subtilis 9943 formed a wrinkled, thinner and more resistant pellicle than B. subtilis 21332. The structure of the pellicle determined by electron microscopy observations showed that cells of B. subtilis 9943 formed microcolonies whereas those of B. subtilis 21332 rapidly died. Under these conditions, surfactin production by strain 21332 decreased after 2 days whereas it remained stable for B. subtilis 9943 during the 6 days of the cultures. These data indicate that cells of B. subtilis strains growing in pellicle can produce lipopeptides differently depending on their cellular organisation.

Keywords

Bacillus subtilis Pellicle Lipopeptides 

References

  1. Al-Ajlani MM, Sheikh MA, Ahmad Z, Hasnain S (2007) Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microb Cell Fact 6:17PubMedCrossRefGoogle Scholar
  2. Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, Thonart P (2001) Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl Biochem Biotechnol 91:551–561PubMedCrossRefGoogle Scholar
  3. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319PubMedCrossRefGoogle Scholar
  4. Bonmatin JM, Laprevote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins activity–structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556PubMedGoogle Scholar
  5. Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci 98:11621–11626PubMedCrossRefGoogle Scholar
  6. Branda SS, Gonzalez-Pastor JE, Dervyn E, Ehrlich SD, Losick R, Kolter R (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186:3970–3979PubMedCrossRefGoogle Scholar
  7. Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238PubMedCrossRefGoogle Scholar
  8. Carillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97CrossRefGoogle Scholar
  9. Chen CL, Chang LK, Chang YS, Liu ST, Tschen JSM (1995) Transposon mutagenesis and cloning of the genes encoding the enzymes of fengycin biosynthesis in Bacillus subtilis. Mol Gen Genet 248:121–125PubMedCrossRefGoogle Scholar
  10. Davis DA, Lynch HC, Varley J (1999) The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb Technol 25:322–329CrossRefGoogle Scholar
  11. Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders L, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci USA 96:13294–13299PubMedCrossRefGoogle Scholar
  12. Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 73:3490–3496PubMedCrossRefGoogle Scholar
  13. Guez JS (2007) Etude de la productivité et de la sélectivité de la biosynthèse de mycosubtiline, un antibiotique surfactant de Bacillus subtilis. Apport du génie biochimique et de la transcriptomique. Ph.D. thesis, Université des Sciences et Technologies de Lille, FranceGoogle Scholar
  14. Guez JS, Müller CH, Danze PM, Büchs J, Jacques P (2008) Respiration Activity MOnitorong System (RAMOS), an efficient tool to study the influence of oxygen transfer rate on the synthesis of lipopeptides by Bacillus subtilis ATCC 6633. J Biotechnol 134:121–126PubMedCrossRefGoogle Scholar
  15. Hamoen LW, Kausche D, Marahiel MA, van Sinderen D, Venema G, Serror P (2003) The Bacillus subtilis transition state regulator AbrB binds to the–35 promoter region of comK. FEMS Microbiol Lett 218:299–304PubMedCrossRefGoogle Scholar
  16. Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J (2004) Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics 272:363–378PubMedCrossRefGoogle Scholar
  17. Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, De Pauw E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett–Burman design. Appl Biochem Biotech 77:223–233CrossRefGoogle Scholar
  18. Julkowska D, Obuchowski M, Holland IB, Seror SJ (2005) Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol 187:65–76PubMedCrossRefGoogle Scholar
  19. Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749PubMedCrossRefGoogle Scholar
  20. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584PubMedCrossRefGoogle Scholar
  21. Leclère V, Marti R, Béchet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483PubMedCrossRefGoogle Scholar
  22. Leenders F, Stein TH, Kablitz B, Franke P, Vater J (1999) Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun Mass Spectrom 13:943–949CrossRefGoogle Scholar
  23. Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174PubMedCrossRefGoogle Scholar
  24. Mogilnaya OA, Krylova TY, Popova LY (2003) Development and morphological features of biofilms formed by transgenic and wild type strains of Bacillus subtilis. Microbiol Res 158:327–335PubMedCrossRefGoogle Scholar
  25. Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234:43–49PubMedCrossRefGoogle Scholar
  26. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125PubMedCrossRefGoogle Scholar
  27. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaced biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38PubMedCrossRefGoogle Scholar
  28. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090PubMedCrossRefGoogle Scholar
  29. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563PubMedCrossRefGoogle Scholar
  30. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain for electron microscopy. J Cell Biol 17:208–212PubMedCrossRefGoogle Scholar
  31. Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch 54c:859–866Google Scholar
  32. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857PubMedCrossRefGoogle Scholar
  33. Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41PubMedCrossRefGoogle Scholar
  34. Tenerio E, Saeki T, Fujita K, Kitakawa M, Baba T, Mori H, Isono K (2003) Systematic characterization of Escherichia coli genes/ORFs affecting biofilm formation. FEMS Microbiol Lett 225:107–114CrossRefGoogle Scholar
  35. Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273PubMedCrossRefGoogle Scholar
  36. Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39:888–901PubMedGoogle Scholar
  37. Yeh MS, Wei YH, Chang JS (2005) Enhanced production of surfactin from Bacillus subtilis by addition of solids carriers. Biotechnol Prog 21:1329–1334PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Marlène Chollet-Imbert
    • 1
  • Frédérique Gancel
    • 1
  • Christian Slomianny
    • 2
    • 3
  • Philippe Jacques
    • 1
  1. 1.Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM UPRES EA 1026), Polytech’Lille, Avenue LangevinUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance
  2. 2.INSERM U 800Université des Sciences et Technologies de Lille 1Villeneuve d’Ascq CedexFrance
  3. 3.Laboratoire de Physiologie CellulaireUniversité des Sciences et Technologies de Lille 1Villeneuve d’Ascq CedexFrance

Personalised recommendations