Skip to main content

Advertisement

Log in

Detection and characterization of an ABC transporter in Clostridium hathewayi

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 16 September 2008

Abstract

An ABC transporter gene from Clostridium hathewayi is characterized. It has duplicated ATPase domains in addition to a transmembrane protein. Its deduced amino acid sequence has conserved functional domains with ATPase components of the multidrug efflux pump genes of several bacteria. Cloning this transporter gene into C. perfringens and E. coli resulted in decreased sensitivities of these bacteria to fluoroquinolones. It also decreased the accumulation and increased the efflux of ethidium bromide from cells containing the cloned gene. Carbonyl cyanide-m-chlorophenylhydrazone (CCCP) inhibited both accumulation and efflux of ethidium bromide from these cells. The ATPase mRNA was overexpressed in the fluoroquinolone-resistant strain when exposed to ciprofloxacin. This is the first report of an ABC transporter in C. hathewayi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bannam TL, Johanesen PA, Salvado CL, Pidot SJ, Farrow KA, Rood JI (2004) The Clostridium perfringens TetA(P) efflux protein contains a functional variant of the Motif A region found in major facilitator superfamily transport proteins. Microbiology 150:127–134

    Article  PubMed  CAS  Google Scholar 

  • Banerjee SK, Bhatt K, Misra P, Chakraborti PK (2000) Involvement of a natural transport system in the process of efflux-mediated drug resistance in Mycobacterium smegmatis. Mol Gen Genet 262:949–956

    Article  PubMed  CAS  Google Scholar 

  • Banerjee SK, Misra P, Bhatt K, Mande SC, Chakraborti PK (1998) Identification of an ABC transporter gene that exhibits mRNA level overexpression in fluoroquinolone-resistant Mycobacterium smegmatis. FEBS Lett 425:151–156

    Article  PubMed  CAS  Google Scholar 

  • Blackmore CG, McNaughton PA, van Veen HW (2001) Multidrug transporters in prokaryotic and eukaryotic cells: physiological functions and transport mechanisms. Mol Membr Biol 18:97–103

    Article  PubMed  CAS  Google Scholar 

  • Bolhuis H, van Veen HW, Molenaar D, Poolman B, Driessen AJ, Konings WN (1996) Multidrug resistance in Lactococcus lactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J 15:4239–4245

    PubMed  CAS  Google Scholar 

  • Bolhuis H, van Veen HW, Poolman B, Driessen AJ, Konings WN (1997) Mechanisms of multidrug transporters. FEMS Microbiol Rev 21:55–84

    Article  PubMed  CAS  Google Scholar 

  • Bouige P, Laurent D, Piloyan L, Dassa E (2002) Phylogenetic and functional classification of ATP-binding cassette (ABC) systems. Curr Protein Pept Sci 3:541–559

    Article  PubMed  CAS  Google Scholar 

  • Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185

    Article  PubMed  CAS  Google Scholar 

  • Diez-Gonzalez F, Russell JB (1997) Effects of carbonylcyanide-m-chlorophenylhydrazone (CCCP) and acetate on Escherichia coli O157:H7 and K-12: uncoupling versus anion accumulation. FEMS Microbiol Lett 151:71–76

    Article  PubMed  CAS  Google Scholar 

  • Dridi L, Tankovic J, Petit JC (2004) CdeA of Clostridium difficile, a new multidrug efflux transporter of the MATE family. Microb Drug Resist 10:191–196

    PubMed  CAS  Google Scholar 

  • Edlund C, Nord CE (1999) Effect of quinolones on intestinal ecology. Drugs 58 Suppl 2:65–70

    Google Scholar 

  • Gill MJ, Brenwald NP, Wise R (1999) Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 43:187–189

    Article  PubMed  CAS  Google Scholar 

  • Jalal S, Wretlind B (1998) Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist 4:257–261

    Article  PubMed  CAS  Google Scholar 

  • Jonas BM, Murray BE, Weinstock GM (2001) Characterization of EmeA, a NorA homolog and multidrug resistance efflux pump, in Enterococcus faecalis. Antimicrob Agents Chemother 45:3574–3579

    Article  PubMed  CAS  Google Scholar 

  • Kaatz GW, Seo SM, Ruble CA (1993) Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 37:1086–1094

    PubMed  CAS  Google Scholar 

  • Kaatz GW, Seo SM (1995) Inducible NorA-mediated multidrug resistance in Staphylococcus aureus. Antimicrob Agents Chemother 39:2650–2655

    PubMed  CAS  Google Scholar 

  • Kobayashi N, Nishino K, Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183:5639–5644

    Article  PubMed  CAS  Google Scholar 

  • Komp Lindgren P, Marcusson LL, Sandvang D, Frimodt-Moller N, Hughes D (2005) Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections. Antimicrob Agents Chemother 49:2343–2351

    Article  PubMed  CAS  Google Scholar 

  • Lomovskaya O, Watkins W (2001a) Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J Mol Microbiol Biotechnol 3:225–236

    PubMed  CAS  Google Scholar 

  • Lomovskaya O, Watkins WJ (2001b) Efflux pumps: their role in antibacterial drug discovery. Curr Med Chem 8:1699–1711

    PubMed  CAS  Google Scholar 

  • Lorca GL, Barabote RD, Zlotopolski V, Tran C, Winnen B, Hvorup RN, Stonestrom AJ, Nguyen E, Huang LW, Kim DS, Saier MH Jr (2007) Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. Biochim Biophys Acta 1768:1342–1366

    Article  PubMed  CAS  Google Scholar 

  • Marrer E, Schad K, Satoh AT, Page MG, Johnson MM, Piddock LJ (2006) Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 50:685–693

    Article  PubMed  CAS  Google Scholar 

  • Mir MA, Rajeswari HS, Veeraraghavan U, Ajitkumar P (2006) Molecular characterisation of ABC transporter type FtsE and FtsX proteins of Mycobacterium tuberculosis. Arch Microbiol 185:147–158

    Article  PubMed  CAS  Google Scholar 

  • Neubauer H, Pantel I, Lindgren PE, Gotz F (1999) Characterization of the molybdate transport system ModABC of Staphylococcus carnosus. Arch Microbiol 172:109–115

    Article  PubMed  CAS  Google Scholar 

  • Neyfakh AA (1988) Use of fluorescent dyes as molecular probes for the study of multidrug resistance. Exp Cell Res 174:168–176

    Article  PubMed  CAS  Google Scholar 

  • Neyfakh AA, Borsch CM, Kaatz GW (1993) Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob Agents Chemother 37:128–129

    PubMed  CAS  Google Scholar 

  • Oh H, Edlund C (2003) Mechanism of quinolone resistance in anaerobic bacteria. Clin Microbiol Infect 9:512–517

    Article  PubMed  CAS  Google Scholar 

  • Oh H, Hedberg M, Edlund C (2002) Efflux-mediated fluoroquinolone resistance in the Bacteroides fragilis group. Anaerobe 8:277–282

    Article  CAS  Google Scholar 

  • Olano C, Rodriguez AM, Mendez C, Salas JA (1995) A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Mol Microbiol 16:333–343

    Article  PubMed  CAS  Google Scholar 

  • Pasca MR, Guglierame P, Arcesi F, Bellinzoni M, De Rossi E, Riccardi G (2004) Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:3175–3178

    Article  PubMed  CAS  Google Scholar 

  • Putman M, Koole LA, van Veen HW, Konings WN (1999) The secondary multidrug transporter LmrP contains multiple drug interaction sites. Biochemistry 38:13900–13905

    Article  PubMed  CAS  Google Scholar 

  • Rafii F, Park M (2005) Effects of gyrase mutation on the growth kinetics of ciprofloxacin-resistant strains of Clostridium perfringens. Anaerobe 11:201–205

    Article  PubMed  CAS  Google Scholar 

  • Rafii F, Park M, Novak JS (2005a) Alterations in DNA gyrase and topoisomerase IV in resistant mutants of Clostridium perfringens found after in vitro treatment with fluoroquinolones. Antimicrob Agents Chemother 49:488–492

    Article  PubMed  CAS  Google Scholar 

  • Rafii F, Park M, Wynne R (2005b) Evidence for active drug efflux in fluoroquinolone resistance in Clostridium hathewayi. Chemotherapy 51:256–262

    Article  PubMed  CAS  Google Scholar 

  • Rafii F, Park M (2007) Substitutions of amino acids in alpha-helix-4 of gyrase A confer fluoroquinolone resistance on Clostridium perfringens. Arch Microbiol 187:137–144

    Article  PubMed  CAS  Google Scholar 

  • Ramlachan N, Anderson RC, Andrews K, Laban G, Nisbet DJ (2007) Characterization of an antibiotic resistant Clostridium hathewayi strain from a continuous-flow exclusion chemostat culture derived from the cecal contents of a feral pig. Anaerobe 13:153–160

    Article  PubMed  CAS  Google Scholar 

  • Raherison S, Gonzalez P, Renaudin H, Charron A, Bebear C, Bebear CM (2002) Evidence of active efflux in resistance to ciprofloxacin and to ethidium bromide by Mycoplasma hominis. Antimicrob Agents Chemother 46:672–679

    Article  PubMed  CAS  Google Scholar 

  • Ross JI, Eady EA, Cove JH, Baumberg S (1995) Identification of a chromosomally encoded ABC-transport system with which the staphylococcal erythromycin exporter MsrA may interact. Gene 153:93–98

    Article  PubMed  CAS  Google Scholar 

  • Rosteck PR Jr, Reynolds PA, Hershberger CL (1991) Homology between proteins controlling Streptomyces fradiae tylosin resistance and ATP-binding transport. Gene 102:27–32

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr (1999) A functional-phylogenetic system for the classification of transport proteins. J Cell Biochem Suppl 32–33:84–94

    Article  Google Scholar 

  • Sanz Y, Lanfermeijer FC, Renault P, Bolotin A, Konings WN, Poolman B (2001) Genetic and functional characterization of dpp genes encoding a dipeptide transport system in Lactococcus lactis. Arch Microbiol 175:334–343

    Article  PubMed  CAS  Google Scholar 

  • van Veen HW, Higgins CF, Konings WN (2001) Molecular basis of multidrug transport by ATP-binding cassette transporters: a proposed two-cylinder engine model. J Mol Microbiol Biotechnol 3:185–192

    PubMed  Google Scholar 

  • van Veen HW, Putman M, Margolles A, Sakamoto K, Konings WN (1999) Structure-function analysis of multidrug transporters in Lactococcus lactis. Biochim Biophys Acta 1461:201–206

    Article  PubMed  Google Scholar 

  • Venter H, Shilling RA, Velamakanni S, Balakrishnan L, Van Veen HW (2003) An ABC transporter with a secondary-active multidrug translocator domain. Nature 426:866–870

    Article  PubMed  CAS  Google Scholar 

  • Venter H., Shahi S, Balakrishnan L, Velamakanni S, Bapna A, Woebking B, van Veen HW (2005) Similarities between ATP-dependent and ion-coupled multidrug transporters. Biochem Soc Trans 33:1008–1011

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha-and beta subunits of ATP synthase, myosin kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • White D (1995) The physiology and biochemistry of prokaryotes. Oxford University Press, Oxford, pp 49–82

    Google Scholar 

  • Woo PC, Lau SK, Woo GK, Fung AM, Yiu VP, Yuen KY (2004) Bacteremia due to Clostridium hathewayi in a patient with acute appendicitis. J Clin Microbiol 42:5947–5949

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank John B. Sutherland and Carl E. Cerniglia for comments on the manuscript and research support. The views presented in this article do not necessarily reflect those of the US Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Rafii.

Additional information

Communicated by Wolfgang Buckel.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00203-008-0411-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafii, F., Park, M. Detection and characterization of an ABC transporter in Clostridium hathewayi . Arch Microbiol 190, 417–426 (2008). https://doi.org/10.1007/s00203-008-0385-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0385-3

Keywords

Navigation