Skip to main content
Log in

A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In the genome of the hyperthermophilic archaeon Thermoproteus tenax a gene (treS/P) encoding a protein with similarity to annotated trehalose phosphorylase (TreP), trehalose synthase (TreS) and more recently characterized trehalose glycosyltransferring synthase (TreT) was identified. The treS/P gene as well as an upstream located ORF of unknown function (orfY) were cloned, heterologously expressed in E. coli and purified. The enzymatic characterization of the putative TreS/P revealed TreT activity. However, contrary to the previously characterized reversible TreT from Thermococcus litoralis and Pyrococcus horikoshii, the T. tenax enzyme is unidirectional and catalyzes only the formation of trehalose from UDP (ADP)-glucose and glucose. The T. tenax enzyme differs from the reversible TreT of T. litoralis by its preference for UDP-glucose as co-substrate. Phylogenetic and comparative gene context analyses reveal a conserved organization of the unidirectional TreT and OrfY gene cluster that is present in many Archaea and a few Bacteria. In contrast, the reversible TreT pathway seems to be restricted to only a few archaeal (e.g. Thermococcales) and bacterial (Thermotogales) members. Here we present a new pathway exclusively involved in trehalose synthesis––the unidirectional TreT pathway––and discuss its physiological role as well as its phylogenetic distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

TPS/TPP:

Trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase

TreS:

Trehalose synthase

TreT:

Trehalose glycosyltransferring synthase

TreP:

Trehalose phosphorylase

TreY/TreZ:

Maltooligosyl-trehalose synthase/maltooligosyl-trehalose trehalohydrolase

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  PubMed  CAS  Google Scholar 

  • Brunner NA, Siebers B, Hensel R (2001) Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden-Meyerhof-Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level. Extremophiles 5:101–109

    Article  PubMed  CAS  Google Scholar 

  • Carpinelli J, Krämer R, Agosin E (2006) Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72(3):1949–1955

    Article  PubMed  CAS  Google Scholar 

  • Chen YS, Lee GC, Shaw JF (2006) Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem 54:7098–7104

    Article  PubMed  CAS  Google Scholar 

  • Di Lernia I, Morana A, Ottombrino A, Fusco S, Rossi M, De Rosa M (1998) Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2:409–416

    Article  PubMed  CAS  Google Scholar 

  • DiRuggiero J, Dunn D, Maeder DL, Holley-Shanks R, Chatard J, Horlacher R, Robb FT, Boos W, Weiss RB (2000) Evidence of recent lateral gene transfer among hyperthermophilic Archaea. Mol Microbiol 38:684–693

    Article  PubMed  CAS  Google Scholar 

  • Dörr C (2002) Diploma thesis. University of Essen, Germany

    Google Scholar 

  • Dörr C, Zaparty M, Tjaden B, Brinkmann H, Siebers B (2003) The hexokinase of the hyperthermophile Thermoproteus tenax. J Biol Chem 278:18744–18753

    Article  PubMed  CAS  Google Scholar 

  • Eis C, Watkins M, Prohaska T, Nidetzky B (2001) Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem J 356:757–767 printed in Great Britain

    Article  PubMed  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Caroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17–27

    Article  Google Scholar 

  • Felsenstein J: [http://evolution.genetics.washington.edu/phylip.html]

  • Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513

    Article  PubMed  CAS  Google Scholar 

  • Greller G, Horlacher R, DiRuggiero J, Boos W (1999) Molecular and biochemical analysis of MalK, the ATP-hydrolyzing subunit of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 279:20259–20264

    Article  Google Scholar 

  • Han SE, Kwon HB, Lee SB, Yi BY, Murayama I, Kitamoto Y, Byun MO (2003) Cloning and characterization of a gene encoding trehalose phosphorylase (TP) from Pleurotus sajor-caju. Sci Dir 30:194–202

    CAS  Google Scholar 

  • Horlacher R, Uhland K, Klein W, Ehrmann M, Boos W (1996) Characterization of a cytoplasmic trehalase of Escherichia coli. J Bacteriol 178:6250–6257

    PubMed  CAS  Google Scholar 

  • Horlacher R, Xavier KB, Santos H, DiRuggiero J, Kossmann M, Boos W (1998) Archaeal binding protein-dependent ABC-transporter: molecular and biochemical analysis maltose/trehalose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 180:680–689

    PubMed  CAS  Google Scholar 

  • Itou H, Okada U, Suzuki H, Yao M, Wachi M, Watanabe N, Tanaka I (2005) The CGL2612 protein from corynebacterium glutamicum is a drug resistence-related transcriptional repressor: structural and functional analysis of a newly identified transcription factor from genomic DNA analysis. J Biol Chem 280:38711–38719

    Article  PubMed  CAS  Google Scholar 

  • Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18

    Article  PubMed  Google Scholar 

  • Kaasen I, Falkenberg P, Styrvold OB, Strom AR (1992) Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by KatF (AppR). J Bacteriol 174:889–898

    PubMed  CAS  Google Scholar 

  • Kobayashi KM, Miura Y, Kettoku M, Komeda T, Iwamatsu A (1996) Gene analysis of trehalose-producing enzymes from hyperthermophilic archaea in sulfolobales. Biosci Biotechnol Biochem 60:1720–1723

    Article  PubMed  CAS  Google Scholar 

  • König H, Sorko R, Zillig W, Reiter WD (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303

    Article  Google Scholar 

  • Lee SJ, Engelmann A, Horlacher R, Qu Q, Vierke G, Hebbeln C, Thomm M, Boos W (2003) TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 278:983–990

    Article  PubMed  CAS  Google Scholar 

  • Markowitz VM, Korzeniewski F, Palaniappan K et al (2006) The integrated microbial genomes (IMG) system. Nucleic Acids Res 34:D344–D348

    Article  PubMed  CAS  Google Scholar 

  • Martins LO, Santos H (1995) Accumulation of mannosylglycerate and di-myo-inositol-phosphate by Pyrococcus furiosus in response to salinity and temperature. Appl Environ Microbiol 61(9):3299–3303

    PubMed  CAS  Google Scholar 

  • Martins LO, Carreto LS, da Costa MS, Santos H (1996) New compatible solutes to di-myo-inositol-phosphate in members of the order Thermotogales. J Bacteriol 178(19):5644–5651

    PubMed  CAS  Google Scholar 

  • Martins LO, Huber R, Huber H, Stetter KO, Da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63(3):896–902

    PubMed  Google Scholar 

  • Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from the thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Et Biophys Acta 1291:177–181

    CAS  Google Scholar 

  • Pan YT, Edavana VK, Jourdian WJ, Edmondson R, Caroll JD, Pastuszak I, Elbein AD (2004) Trehalose synthase of Mycobacterium smegmatis. Eur J Biochem 271:4259–4269

    Article  PubMed  CAS  Google Scholar 

  • Philippe H (1993) MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res 21:5264–5272

    Article  PubMed  CAS  Google Scholar 

  • van der Does C, Manting EH, Kaufmann A, Lutz M, Driessen AJM (1998) Interaction between SecA and SecYEG in Micellar Solution and Formation of the Membrane-Inserted State. Biochemistry 37(1):201–210

    Article  PubMed  Google Scholar 

  • Qu Q, Lee SJ, Boos W (2004a) Molecular and biochemical characterization of a fructose-6-phosphate-forming and ATP-dependent fructokinase of the hyperthermophilic archaeon Thermococcus litoralis. Extremophiles 8:301–308. doi:10.1007/s00792-004-0392-5

    Article  PubMed  CAS  Google Scholar 

  • Qu Q, Lee SJ, Boos W (2004b) TreT, a Novel Glycosyltransferring Synthase of the Hyperthermophilic Archaeon Thermococcus litoralis. J Biol Chem 279:47890–47897

    Article  PubMed  CAS  Google Scholar 

  • Ryu SI, Park CS, Cha J, Woo EJ, Lee SB (2005) A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem Biophys Res Commun 329:429–436

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Kase T, Takahashu E, Horinouchi S (1998) Purification and characterization of a trehalose synthase from the basidiomycete Grifola frondosa. Appl Environ Microbiol 64(11):4340–4345

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning––a laboratory manual, 2nd edn. Cold Spring Habour Laboratory Press, New York

    Google Scholar 

  • Siebers B, Wendisch VF, Hensel R (1997) Carbohydrate metabolism in Thermoproteus tenax: in vivo utilization of the non-phosphorylative Enter-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase. Arch Microbiol 168:120–127

    Article  PubMed  CAS  Google Scholar 

  • Siebers B, Tjaden B, Michalke K, Dörr C, Ahmed H, Zaparty M, Gordon P, Sensen A, Zibat CW, Klenk H-P, Schuster SC, Hensel R (2004) Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol 186:2179–2194

    Article  PubMed  CAS  Google Scholar 

  • Snel B, Lehmann G, Bork P, Huynen MA (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28(18):3442–3444

    Article  PubMed  CAS  Google Scholar 

  • Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960. doi:10.1093/bioinformatics/bti125

    Article  PubMed  Google Scholar 

  • Söding J, Biegert A, Lupas A (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research. 33:W244–W248. doi:10.1093/nar/gki40

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1997) Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC33923. Biochim Et Biophys Acta 1334:28–32

    CAS  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18(5):691–699

    PubMed  CAS  Google Scholar 

  • Xavier KB, Martins LO, Peist R, Kossmann M, Boos W, Santos H (1996) High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 178:4773–4777

    PubMed  CAS  Google Scholar 

  • Xavier KB, Peist R, Kossmann M, Boos W, Santos H (1999) Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoras. Purification and characterization of key enzymes. J Bacteriol 181:3358–3367

    PubMed  CAS  Google Scholar 

  • Zaparty M (2003) Diploma thesis. University Essen, Germany

    Google Scholar 

  • Zaparty M (2007) Ph.D thesis. University of Duisburg-Essen, Germany

    Google Scholar 

  • Zaparty M, Tjaden B, Hensel R, Siebers B (2008) The central carbohydrate metabolism of the hyperthermophilic crenarchaeote Thermoproteus tenax: pathways and insights into their regulation. Arch Microbiol (submitted)

  • Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfatares. Zentbl Bakteriol Hyg 1 Abt Org C 2:205–227

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant Si642/6-1 (SPP1112). The authors thank W. Boos (University of Konstanz, Germany) for providing the expression vector for the TreT of T. litoralis, S.V. Albers (University of Groningen, The Netherlands) for providing vector pET302 and A. Lupas (MPI for Developmental Biology, Tübingen, Germany) for support in structural analyses of OrfY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Siebers.

Additional information

Communicated by Harald Huber.

T. Kouril and M. Zaparty contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouril, T., Zaparty, M., Marrero, J. et al. A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190, 355–369 (2008). https://doi.org/10.1007/s00203-008-0377-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0377-3

Keywords

Navigation