Skip to main content
Log in

Glycoconjugates enhanced the intracellular killing of Bacillus spores, increasing macrophage viability and activation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Infections caused by Bacillus spores can be attenuated if the intracellular killing of the organism by macrophages can be enhanced. Glycoconjugate-bearing polymers, which selectively bind to Bacillus spores, were tested for modulation of intracellular killing when added prior to, during, and following macrophage exposure to B. cereus spores. In the absence of glycoconjugates, murine macrophages were ineffective at killing Bacillus spores. In presence of glycoconjugates, however, macrophages efficiently killed spores, whether the glycoconjugates were added to the cells prior to, during, and following spore addition. Glycoconjugates were shown to exert a protective influence on macrophages and increase their activation, as evidenced by viability and lactate dehydrogenase release assays. Increased levels of nitric oxide production by macrophages pretreated with glycoconjugates suggest that, under these conditions, glycoconjugates provide an activation signal to macrophages. These results indicate that glycoconjugates promote killing of Bacillus spores, while increasing macrophage activation level and viability. The selection of glycoconjugate ligands bearing immunomodulating properties could be exploited for vaccine and/or immunomodulator development and/or for the improvement of existing vaccines against B. cereus and B. anthracis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Glyc-PAA-flu:

Glycoconjugate-polyacrylamide-fluorescein polymer

GC1:

Galα1-3 GalNAcα-PAA-flu glycoconjugate

GC3:

GalNAcα1-3 GalNAc β-PAA-flu glycoconjugate

GCs:

Glycoconjugates

Gal:

Galactose

GalNAc:

N-Acetylgalactosamine

PAA:

Polyacrylamide

flu:

Fluorescein

LDH:

Lactate dehydrogenase

NO:

Nitric oxide

CFUs:

Colony forming units

OD:

Optical density

M:

Macrophage only

M + sp:

Macrophages exposed to untreated spores

U-sp:

Untreated spores

GC-T sp:

Glycoconjugate-treated spores

References

  • Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD (1991) Comparative analysis of Bacillus anthracis, Bacillus cereus 2 and related species on the basis of reverse transcriptase sequencing of the 16S rRNA. Int J Syst Bacteriol 41:343–346

    Article  PubMed  CAS  Google Scholar 

  • Ash C, Collins MD (1992) Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol Lett 73:75–80

    Article  PubMed  CAS  Google Scholar 

  • Anderson PW, Pichichero ME, Stein EC, Porcalli S, Betts RF, Connuck DM, Lorones D, Insel RA, Zahradnik JM, Eby R (1989) Effect of oligosaccharide chain length, exposed terminal group, and hapten loading on the antibody response of human adults and infants to vaccines consisting of Haemophilus influenzae type b capsular antigen unterminally coupled to the diphtheria protein CRM197. J Immunol 142:2464–2468

    PubMed  CAS  Google Scholar 

  • Axford J (2001) The impact of glycobiology on medicine. Trends Immunol 22:237–239

    Article  PubMed  CAS  Google Scholar 

  • Barnaby W (1997) The plague markers the secret world of biological warfare. In: Barnaby W (ed). Vision Paperbacks, London

  • Baillie L, Read TD (2001) Bacillus anthracis, a bug with attitude! Curr Opin Microbiol 4:78–81

    Article  PubMed  CAS  Google Scholar 

  • Black JG (2005) Microbiology principles and explorations. In: Black JG (ed). Wiley, New York, pp 463–484

  • Beauvais F, Michel L, Dubertret L (1995) The nitric oxide donors, azide and hydroxylamine, inhibit the programmed cell death of cytokine-deprived human eosinophils. FEBS Lett 361:229–232

    Article  PubMed  CAS  Google Scholar 

  • Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291:2357–2364

    Article  PubMed  CAS  Google Scholar 

  • Borman S (2004) Carbohydrate vaccines. Chem Eng News 82(32):31–35

    Google Scholar 

  • Bovin NV (1998) Polyacrylamide-based glycoconjugates as tools in glycobiology. Glycocon J 15:431–446

    Article  CAS  Google Scholar 

  • Crocker PR, Feizi T (1996) Carbohydrate recognition systems functional trials in cell–cell interaction. Curr Opin Struct Biol 6:679–691

    Article  PubMed  CAS  Google Scholar 

  • Choi BM, Pae HO, Jang S, Kim YM, Chung HT (2002) Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol 35:116–126

    PubMed  CAS  Google Scholar 

  • De Bolle X, Bayliss CD, Field D, van de Ven T, Saunders NJ, Hood DW, Moxon ER (2000) The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol 35:211–222

    Article  PubMed  Google Scholar 

  • Dimmelder S, Haendeler J, Nehls M, Zeiher AM (1997) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185:601–607

    Article  Google Scholar 

  • Duesbery NS, Vande Woude GF (1999) Anthrax toxins. Cell Mol Life Sci 55:1599–1609

    Article  PubMed  CAS  Google Scholar 

  • Feizi T (2000a) Carbohydrate-mediated recognition systems in innate immunity. Immunol Rev 173:79–88

    Article  PubMed  CAS  Google Scholar 

  • Feizi T (2000b) Progress in deciphering the information content of the ‘glycome’—a crescendo in the closing years of the millennium. Glycoconj J 17:553–565

    Article  PubMed  CAS  Google Scholar 

  • Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261:7123–7126

    PubMed  CAS  Google Scholar 

  • Fox A, Black GE, Fox K, Rostovtseva S (1993) Determination of carbohydrate profiles of Bacillus anthracis and Bacillus cereus including identification of O-methyl methylpentoses by using gas chromatography-mass spectrometry. J Clin Microbiol 31:887–894

    PubMed  CAS  Google Scholar 

  • Gabius HJ, Gabius S (1997) Glycosciences status and perspectives. Chapman & Hall, London

    Google Scholar 

  • Greenberg S, Grinstein S (2002) Phagocytosis. Opin Immunol 14:136–145

    Article  CAS  Google Scholar 

  • Guidi-Rontani C, Mock M (2002) Macrophage interactions. Curr Top Microbiol Immunol 271:115–141

    PubMed  CAS  Google Scholar 

  • Hakomori S (1981) Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem 50:733–764

    Article  PubMed  CAS  Google Scholar 

  • Jamie WE (2002) Anthrax diagnosis, treatment, prevention. Primary Care Update OB/GYNS 9:117–121

    Article  Google Scholar 

  • Karlsson KA, Angstrom J, Bergstrom J, Lanne B (1992) Microbial interaction with animal cell surface carbohydrates. APMIS Suppl 27:71–83

    PubMed  CAS  Google Scholar 

  • Kasper D, Paoletti LC, Wessels MR, Guttormsen H, Carey VJ, Jennings HJ, Baker CJ (1996) Immune response to type III group B streptococcal polysaccharide-tetanus toxoid conjugate vaccine. J Clin Invest 98:2308–2314

    Article  PubMed  CAS  Google Scholar 

  • Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM, Okinaka R, Jaackson PJ, Hugh-Jones ME (2000) Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol 182:2928–2936

    Article  PubMed  CAS  Google Scholar 

  • Keller R, Geiges M, Keist R (1990) l-Arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res 50:1421–1425

    PubMed  CAS  Google Scholar 

  • Kwon YG, Min JK, Kim KM, Lee DJ, Billiar TR, Kim YM (2001) Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J Biol Chem 276:10627–10633

    Article  PubMed  CAS  Google Scholar 

  • Kiessling LL, Gestwicki JE, Strong LE (2000) Synthetic multivalent ligands in the exploration of cell surface interactions. Curr Opin Chem Biol 6:696–703

    Article  Google Scholar 

  • Kiessling LL, Pohl NL (1996) Strength in numbers non-natural polyvalent carbohydrate derivatives. Chem Biol 3:71–77

    Article  PubMed  CAS  Google Scholar 

  • Kojima N, Hakomori S (1989) Sialyllactose-mediated cell interaction during granulosa cell differentiation. J Biol Chem 264:20159–20162

    PubMed  CAS  Google Scholar 

  • Kojima N, Hakomori S (1991) Carbohydrate–carbohydrate interaction of glycosphingolipids. J Biol Chem 266:17552–17558

    PubMed  CAS  Google Scholar 

  • Little SF, Webster WM, Ivins BE, Fellows PF, Norris SL, Andrews GP (2004) Development of an in vitro-based potency assay for anthrax vaccine. Vaccine 22:2843–2852

    Article  PubMed  CAS  Google Scholar 

  • Patra G, Sylvestre P, Ramisse V, Thérasse J, Guesdon JL (1996) Isolation of a specific chromosomic DNA sequence of Bacillus anthracis and its possible use in diagnosis. FEMS Immunol Med Microbiol 15:223–231

    Article  PubMed  CAS  Google Scholar 

  • Popov SG, Villasmil R, Bernardi J, Grene E, Cardwell J, Popova T, Wu A, Alibek A, Bailey C, Alibek K (2002) Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells. FEBS Lett 527:211–215

    Article  PubMed  CAS  Google Scholar 

  • Ramirez DM, Leppla SH, Schneerson R, Shiloach J (2002) Production, recovery and immunogenicity of the protective antigen from a recombinant strain of Bacillus anthracis. J Ind Microbiol Biotechnol 28:232–238

    Article  PubMed  CAS  Google Scholar 

  • Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, Holtzapple EK, Okstad OA, Helgason E, Rilstone J, Wu M, Kolonay JF, Beanan MJ, Dodson RJ, Brinkac LM, Gwinn M, DeBoy RT, Madpu R, Daugherty SC, Durkin AS, Haft DH, Nelson WC, Peterson JD, Pop M, Khouri HM, Radune D, Benton JL, Mahamoud Y, Jiang L, Hance IR, Weidman JF, Berry KJ, Plaut RD, Wolf AM, Watkins KL, Nierman WC, Hazen A, Cline R, Redmond C, Thwaite JE, White O, Salzberg SL, Thomason B, Friedlander AM, Koehler TM, Hanna PC, Kolsto AB, Fraser CM (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86

    Article  PubMed  CAS  Google Scholar 

  • Schneerson R, Robbins JB, Parke JC, Bell C Jr, Schlesselman JJ, Sutton A, Wang Z, Schiffman G, Karpas A, Shiloach J (1986) Quantitative and qualitative analyses of serum antibodies elicited in adults by Haemophilus influenzae type b and pneumococcal type 6A capsular polysaccharide-tetanus toxoid conjugates. Infect Immun 52:519–528

    PubMed  CAS  Google Scholar 

  • Singh Y, Leppla SH, Bhatnagar R, Friedlander AM (1989) Internalization and processing of Bacillus anthracis lethal toxin by toxin-sensitive and -resistant cells. J Biol Chem 264:11099–11102

    PubMed  CAS  Google Scholar 

  • Spencer RC (2003) Bacillus anthracis. J Clin Pathol 56:182–177

    Article  PubMed  CAS  Google Scholar 

  • Steichen C, Chen P, Kearney JF, Turnbough CL Jr (2003) Immunodominant protein and other proteins of the Bacillus anthracis exosporium. J Bacteriol 185:1903–1910

    Article  PubMed  CAS  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2003) Polymorphism in the collagen-like region of the Bacillus anthracis BclA protein leads to variation in exosporium filament length. J Bacteriol 185:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Tarasenko O, Islam Sh, Paquiot D, Levon K (2004a) Glycoconjugates for recognition of Bacillus spores. Carb Res 339:2859–2870

    Article  CAS  Google Scholar 

  • Tarasenko O, Paquiot D, Islam Sh, Alusta P, Levon K (2004b) Recognition and inhibition of Bacillus species spores. In: Proceedings of the bacterial spores challenges and future directions for biodefense meeting argonne national laboratory, Chicago, IL

  • Tarasenko O, Paquiot D, Alusta P, Islam Sh, Levon K (2005) Glycoconjugates as inhibitors of Bacillus spores. In: Proceedings of the experimental biology 2005 annual meeting and the XXXV international congress of physiological sciences, San Diego, CA March 31st–April 6th, ASPET-323 8

  • Tarasenko O, Burton E, Desikan S, Bush J, Alusta P (2007a) Glycoconjugates enhanced phagocytosis of B. cereus spores using Dictyostelium discoideum as a model. PMSE 96:82–83

    CAS  Google Scholar 

  • Tarasenko O, Burton E, Soderberg L, Alusta P (2007b) Glycoconjugates and their role in phagocytosis and destruction of B. cereus spores. PMSE 96:946–947

    CAS  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides all of the theories are correct. Glycobiol 3:97–130

    Article  CAS  Google Scholar 

  • Vespa GNR, Cunha FQ, Silva JS (1994) Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect Immun 62:5177–5182

    PubMed  CAS  Google Scholar 

  • Waller LN, Stump MJ, Fox KF, Harley WM, Fox A, Stewart GC, Shahgholi M (2005) Identification of a second collagen-like glycoprotein produced by Bacillus anthracis and demonstration of associated spore-specific sugars. J Bacteriol 187:4592–4597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by start-up funds and a SEED institutional grant, originating from the Office for Research and Graduate Studies, University of Arkansas at Little Rock, Little Rock, AR, USA. In addition, the authors express their sincere appreciation to the reviewers of the Archives of Microbiology Journal for their valuable innovative ideas in improving the present manuscript and experimental design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Tarasenko.

Additional information

Communicated by Sebastian Suerbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasenko, O., Soderberg, L., Hester, K. et al. Glycoconjugates enhanced the intracellular killing of Bacillus spores, increasing macrophage viability and activation. Arch Microbiol 189, 579–587 (2008). https://doi.org/10.1007/s00203-008-0352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0352-z

Keywords

Navigation