Skip to main content
Log in

Functional analysis of a BarX homologue (SngA) as a pleiotropic regulator in Streptomyces natalensis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The prior sequencing of the upstream region of the γ-butyrolactone autoregulator receptor gene (sngR) in Streptomyces natalensis revealed the presence of a 972-bp gene encoding a BarX homologue (SngA), which acts as a pleiotropic regulator controlling secondary metabolism and morphological differentiation. In this study, we investigated the in vivo function of SngA in S. natalensis, by comparing the natamycin production, morphology, and transcription of genes related to natamycin biosynthesis in a wild-type strain and a sngA-deleted mutant. The disruption of sngA resulted in a decrease in natamycin production, and in the induction of pigment production that had not been previously observed from S. natalensis. On the other hand, the insertion of the intact sngA with its own promoter, into the wild-type strain, resulted in a 1.7-fold increase in natamycin production. Spore formation decreased in comparison to that of the wild-type strain when the sngA-deleted mutant was grown on YEME agar, MS medium, and ISP4 medium. All phenotypes were restored to the original wild-type phenotypes upon complementation with the intact sngA, suggesting that SngA has pleiotropic functions in controlling both morphological differentiation and secondary metabolite production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antón N, Mendes MV, Martín JF, Aparicio JF (2004) Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186:2567–2575

    Article  PubMed  Google Scholar 

  • Antón N, Santos-Aberturas J, Mendes MV, Guerra SM, Martín JF, Aparicio JF (2007) PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology 153:3174–3183

    Article  PubMed  Google Scholar 

  • Aparicio JF, Colina AJ, Ceballos E, Martin JF (1999) The biosynthetic gene cluster for the 26-membered ring polyene macrolide pimaricin: a new polyketide synthase organization encoded by two subclusters separated by functionalization genes. J Biol Chem 274:10133–10139

    Article  PubMed  CAS  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  PubMed  CAS  Google Scholar 

  • Butler MJ, Takano E, Bruheim P, Jovetic S, Marinelli F, Bibb MJ (2003) Deletion of scbA enhances antibiotic production in Streptomyces lividans. Appl Microbiol Biotechnol 61:512–516

    PubMed  CAS  Google Scholar 

  • Choi SU, Lee CK, Hwang YI, Kinosita H, Nihira T (2003) Gamma-butyrolactone autoregulators and receptor proteins in non-Streptomyces actinomycetes producing commercially important secondary metabolites. Arch Microbiol 180:303–307

    Article  PubMed  CAS  Google Scholar 

  • Eritt I, Gräfe U, Fleck WF (1984) Inducers of both cytodifferentiation and anthracycline biosynthesis of Streptomyces griseus and their occurrence in actinomycetes and other microorganisms. Z Allg Mikrobiol 24:3–12

    Article  PubMed  CAS  Google Scholar 

  • Grant SGN, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649

    Article  PubMed  CAS  Google Scholar 

  • Hara O, Beppu T (1982) Mutants blocked in streptomycin production in Streptomyces griseus—the role of A-factor. J Antibiot 35:349–358

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Nihira T, Yamada Y (1992) Distribution of virginiae butanolides and IM-2 in the genus Streptomyces. J Ferment Bioeng 73:61–65

    Article  CAS  Google Scholar 

  • Horinouchi S, Suzuki H, Nishiyama M, Beppu T (1989) Nucleotide sequence and transcriptional analysis of the Streptomyces griseus gene (afsA) responsible for A-factor biosynthesis. J Bacteriol 171:1206–1210

    PubMed  CAS  Google Scholar 

  • Kawachi R, Wangchaisoonthorn U, Nihira T, Yamada Y (2000) Identification of an AfsA homologue (BarX) from Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol Microbiol 36:302–313

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kitani S, Mervyn B, Nihira T, Yamada Y (2000) Conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces lavendulae FRI-5. J Microbiol Biotechnol 10:535–538

    CAS  Google Scholar 

  • Kondo K, Higuchi Y, Sakuda S, Nihira T, Yamada Y (1989) New virginiae butanolide from Streptomyces virginiae. J Antibiot 42:1873–1876

    PubMed  CAS  Google Scholar 

  • Lee KM, Lee CK, Choi SU, Park HR, Kitani S, Nihira T Hwang YI (2005) Cloning and in vivo functional analysis by disruption of a gene encoding the gamma-butyrolactone autoregulator receptor from Streptomyces natalensis. Arch Microbiol 184:249–257

    Article  PubMed  CAS  Google Scholar 

  • Mori K (1983) Revision of the absolute configuration of A-factor. Tetrahedron 39:3107–3109

    Article  CAS  Google Scholar 

  • Ohashi H, Zheng YH, Nihira T, Yamada Y (1989) Distribution of virginiae butanolides in antibiotic-producing Actinomycetes, and identification of the inducing factor from Streptomyces antibioticus as virginiae butanolide A. J Antibiot 42:1191–1195

    PubMed  CAS  Google Scholar 

  • Paranthaman S, Dharmalingam K (2003) Intergeneric conjugation in Streptomyces peucetius and Streptomyces sp. strain C5: chromosomal integration and expression of recombinant plasmids carrying the chiC gene. Appl Environ Microbiol 69:84–91

    Article  PubMed  CAS  Google Scholar 

  • Recio E, Colinas A, Rumbero A, Aparicio JF, Martín JF (2004) PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem 279:41586–41593

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Nihira T, Sakuda S, Yanagimoto M, Yamada Y (1989) Isolation and structure of a new butyrolactone autoregulator from Streptomyces sp. FRI-5. J Ferment Bioeng 68:170–173

    Article  CAS  Google Scholar 

  • Shikura N, Yamamura J, Nihira T (2002) barS1, a gene for biosynthesis of a gamma-butyrolactone autoregulator, a microbial signaling molecule eliciting antibiotic production in Streptomyces species. J Bacteriol 184:5151–5157

    Article  PubMed  CAS  Google Scholar 

  • Stegmann E, Pelzer S, Wilken K, Wohlleben W (2001) Development of three different gene cloning systems for genetic investigation of the new species Amycolatopsis japonicum MG417-CF17, the ethylenediaminedisuccinic acid producer. J Biotechnol 92:195–204

    Article  PubMed  CAS  Google Scholar 

  • Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028

    Article  PubMed  CAS  Google Scholar 

  • Takano E, Nihira T, Hara Y, Jones JJ, Gershater CJL, Yamada Y, Bibb M (2000) Purification and structural determination of SCB1, a γ-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J Biol Chem 275:11010–11016

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Vining LC (2003) Control of growth, secondary metabolism and sporulation in Streptomyces venezuelae ISP5230 by jadW(1), a member of the afsA family of gamma-butyrolactone regulatory genes. Microbiology 149:1991–2004

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Sugamura K, Kondo K, Yanagimoto M, Okada H (1987) The structure of inducing factors for virginiamycin production in Streptomyces virginiae. J Antibiot 40:496–504

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant No. RTI04-03-07 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE), Republic of Korea

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Il Hwang.

Additional information

Communicated by Jorge Membrillo-Hernàndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KM., Lee, CK., Choi, SU. et al. Functional analysis of a BarX homologue (SngA) as a pleiotropic regulator in Streptomyces natalensis . Arch Microbiol 189, 569–577 (2008). https://doi.org/10.1007/s00203-008-0349-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0349-7

Keywords

Navigation