Skip to main content

Advertisement

Log in

The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The recent sequencing of the DNA region of the geldanamycin post-polyketide synthase (PKS) modification gene clusters revealed the presence of two regulatory genes: gdmRI (2,907 bp) and gdmRII (2,766 bp). The deduced products of gdmRI and gdmRII (968 and 921 amino acid residues, respectively) were identified as homologues of the LuxR transcriptional regulatory proteins. Inactivation by gene replacement of gdmRI or gdmRII in the Streptomyces hygroscopicus 17997 genome resulted in a complete loss of geldanamycin production. Complementation by a plasmid carrying gdmRI or gdmRII restored geldanamycin production, suggesting that the products of these two regulatory genes are positive regulators that are required for geldanamycin biosynthesis. The gdmRI transcript was detected in the ΔgdmRII mutant, and the gdmRII was detected in the ΔgdmRI mutant, indicating that the two genes are transcribed independently and do not regulate each other. Time course of gene expression analysis by RT-PCR of the geldanamycin biosynthetic genes showed that the transcription of gdmRI and gdmRII correlates with that of genes involved in polyketide biosynthesis, but not with the post-PKS modification gene gdmN, whose transcription is initiated earlier. gdmRI or gdmRII gene disruptants did not transcribe the polyketide biosynthetic related genes pks, gdmF, and gdnA-O-P, but did trancribe gdmN. These results demonstrated that gdmRI and gdmRII are pathway-specific positive regulators that control the polyketide biosynthetic genes in geldanamycin biosynthsis, but not the post-PKS modification gene, gdmN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arias P, Fernández-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3 (2) as a DNA-binding protein. J Bacteriol 181:6958–6968

    PubMed  CAS  Google Scholar 

  • Anton N, Mendes MV, Martin JF, Aparicio JF (2004) Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186:2567–2575

    Article  PubMed  CAS  Google Scholar 

  • Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P (1992) N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:997–1004

    PubMed  CAS  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  PubMed  CAS  Google Scholar 

  • Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62:204–229

    PubMed  CAS  Google Scholar 

  • Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, Strom AR, Valla S, Zotchev SB (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403

    Article  PubMed  CAS  Google Scholar 

  • Chater KF, Bibb MJ (1997) Regulation of bacterial antibiotic production. In: Rehm H-J, Reed G (eds) Products of secondary metabolism (biotechnology), vol 7. VCH, Weinheim, pp 57–105

    Google Scholar 

  • Damiano JS, Oliveira V, Welsh K, Reed JC (2004) Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses. Biochem J 381:213–219

    Article  PubMed  CAS  Google Scholar 

  • DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442–447

    CAS  Google Scholar 

  • De Schrijver A, De Mot R (1999) A subfamily of MalT-related ATP-dependent regulators in the LuxR family. Microbiology 145:1287–1288

    Article  PubMed  Google Scholar 

  • Gao Q-J, Shang G-D,Yang Y, Sun GZ, Wang Y-G (2002) Cloning and analysis of geldanamycin biosynthetic genes from S. hygroscopicus 17997. Chin J Antibiot 27:13–17

    Google Scholar 

  • Ghisalba O, Nüesch J (1981) Genetic approach to the biosynthesis of the rifamycin- chromophore in Nocardia mediterranei. IV, identification of 3-amino-5-hydroxybenzoic acid as a direct precursor of the seven-carbon amino starter-unit. J Antibiot (Tokyo) 34:64–71

    CAS  Google Scholar 

  • Goetz MP, Toft D, Reid J, Ames M, Stensgard B, Safgren S, Adjei AA, Sloan J, Atherton P, Vasile V, Salazaar S, Adjei A, Croghan G, Erlichman C (2005) Phase I trial of 17-allylamino-17- demethoxy- geldanamycin in patients with advanced cancer. J Clin Oncol 23:1078–1087

    Article  PubMed  CAS  Google Scholar 

  • Grafe U, Reinhardt G, Krebs D, Eritt I, Fleck WF (1984) Pleiotropic effects of a butyrolactone- type autoregulator on mutants of Streptomyces griseus blocked in cytodifferentiation. J Gen Microbiol 130:1237–1245

    PubMed  CAS  Google Scholar 

  • Hara O, Beppu T (1982) Mutants blocked in streptomycin production in Streptomyces griseus—the role of A-factor. J Antibiot (Tokyo) 35:349–358

    CAS  Google Scholar 

  • He W-Q, Wang Y-G (2006) Cloning and analysis of geldanamycin partial biosynthetic gene cluster of Streptomyces hygroscopicus 17997. Chin J Biotechnol 22:902–906

    Article  Google Scholar 

  • He W-Q, WU L-Z, Du Y, Gao Q-J, WANG Y-G (2006) Identification of AHBA biosynthetic genes related to geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Curr Microbiol 52:197–203

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi S, Beppu T (1992) Regulation of secondary metabolism and cell differentiation in Streptomyces: a-factor as a microbial hormone and the AfsR protein as a component of a two-component regulatory system. Gene 115:167–172

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ, Karoonuthaisiri N, Lih CJ, Kao CM, Buttner MJ, Cohen SN (2005) Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276–1287

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka H, Horinouchi S, Kieser HM, Hopwood DA, Beppu T (1992) A putative two- component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 174:7585–7594

    PubMed  CAS  Google Scholar 

  • Kawaguchi T, Azuma M, Horinouchi S, Beppu T (1988) Effect of B-factor and its analogues on rifamycin biosynthesis in Nocardia sp. J Antibiot (Tokyo) 41:360–365

    CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Koonin EV, Aravind L (2002) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 9:394–404

    Article  PubMed  CAS  Google Scholar 

  • Leskiw BK, Lawlor EJ, Fernandez-Abalos JM, Chater KF (1991) TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc Natl Acad Sci USA 88:2461–2465

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Tian Y, Yang H, Tan H (2005) A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55:1855–1866

    Article  PubMed  CAS  Google Scholar 

  • Madduri K, Hutchinson CR (1995) Functional characterization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol 177:1208–1215

    PubMed  CAS  Google Scholar 

  • Marck C, Lefebvre O, Carles C, Riva M, Chaussivert N, Ruet A, Sentenac A (1993) The TFIIIB-assembling subunit of yeast transcription factor TFIIIC has both tetratricopeptide repeats and basic helix-loop-helix motifs. Proc Natl Acad Sci USA 90:4027–4031

    Article  PubMed  CAS  Google Scholar 

  • McDaniel R, Ebert-Khosla S, Hopwood DA, Khosla C (1993) Engineered biosynthesis of novel polyketides. Science 262:1546–1550

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Tanaka I (1997) Structure of the DNA-binding domain of the OmpR family of response regulators. Mol Microbiol 24:665–667

    Article  PubMed  CAS  Google Scholar 

  • Mo H-B, Bai L-Q, Wang S-L, Yang K-Q (2004) Construction of efficient conjugal plasmids between Escherichia coli and streptomycetes. Chin J Biot 20:662–666

    CAS  Google Scholar 

  • Molnár I, Aparicio JF, Haydock SF, Khaw LE, Schwecke T, König A, Staunton J, Leadlay PF (1996) Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169:1–7

    Article  PubMed  Google Scholar 

  • Narva KE, Feitelson JS (1990) Nucelotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3 (2). J Bacteriol 172:326–333

    PubMed  CAS  Google Scholar 

  • Pérez-Llarena FJ, Liras P, Rodríguez-García A, Martín JF (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds. J Bacteriol 179:2053–2059

    PubMed  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  PubMed  Google Scholar 

  • Rascher A, Hu Z, Viswanathan N, Schirmer A, Reid R, Nierman WC, Lewis M, Hutchinson CR (2003) Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Lett 218:223–230

    Article  PubMed  CAS  Google Scholar 

  • Recio E, Colinas A, Rumbero A, Aparicio JF, Martin JF (2004) PI factor, a novel type quorum- sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem 279:41586–41593

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sasaki K, Yasuda H, Onodera K (1979) Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. J Antibiot (Tokyo) 32(8):849–851

    CAS  Google Scholar 

  • Tao P-J, Lou Z-X,Yao T-J, Zhang X-Q, Xian SW, Yao E-T, Liu Y-Z, Wang SQ (1997) Antiviral study on the broad spectrum antiviral antibiotic 17997 in vitro and in vivo. Chin J Antibiot 22:368–372

    CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Wietzorrek A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1177–1184

    Article  Google Scholar 

  • Wilson DJ, Xue Y, Reynolds KE, Sherman DH (2001) Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J Bacteriol 183:3468–3475

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from National Dept. of Sciences and Technology under Preliminary Basic Research 973 project in 2001 (No. 2001CCA00500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiguang Wang.

Additional information

Communicated by Jean-Luc Pernodet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Lei, J., Liu, Y. et al. The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Arch Microbiol 189, 501–510 (2008). https://doi.org/10.1007/s00203-007-0346-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0346-2

Keywords

Navigation