Skip to main content
Log in

Exopolysaccharide biosynthesis is important for Mesorhizobium tianshanense: plant host interaction

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Mesorhizobium tianshanense is a nitrogen-fixing bacterium that can establish symbiotic associations with Glycyrrhiza uralensis in the form of root nodules. Nodule formation in rhizobia often requires various secreted carbohydrates. To investigate exopolysaccharide (EPS) production and function in M. tianshanense, we performed a genome-wide screen using transposon mutagenesis to identify genes involved in EPS production. We identified seven mutants that produced significantly lower amounts of EPS as well as a two-component sensor kinase/response regulator system that is involved in the activation of EPS synthesis. EPS mutants formed significantly less biofilm and displayed severely reduced nodulation capacity than wild type bacteria, suggesting that EPS synthesis can play important roles in the symbiosis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bardin SD, Finan TM (1998) Regulation of phosphate assimilation in Rhizobium (Sinorhizobium) meliloti. Genetics 148:1689–1700

    PubMed  CAS  Google Scholar 

  • Becker A, Pühler A (1998) Production of exopolysaccharides. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Molecular biology of model plant-associated bacteria. Kluwer, Dordrecht, pp 97–118

    Google Scholar 

  • Boesten B, Schlüter A, Prell J, Krämer M, Lipka V, Priefer UB (2000) Identifying genes suitable for constructing pH and salt tolerant Rhizobium inoculants for improving French bean cultivation under semiarid conditions. In: Olivares J, Palomares AJ (eds) Proceedings of the fourth european nitrogen fixation conference, Viceconsejería, p 319

  • Chen W, Wang E, Wang S, Li Y, Chen X, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159

    PubMed  CAS  Google Scholar 

  • Chiang SL, Mekalanos JJ (1999) rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infect Immun 67:976–980

    PubMed  CAS  Google Scholar 

  • D’Antuono AL, Casabuono A, Couto A, Ugalde RA, Lepek VC (2005) Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. Mol Plant Microbe Interact 18:446–457

    Article  PubMed  CAS  Google Scholar 

  • Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596

    Article  PubMed  CAS  Google Scholar 

  • Fenner BJ, Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR (2004) Sinorhizobium medicae genes whose regulation involves the ActS and/or ActR signal transduction proteins. FEMS Microbiol Lett 236:21–31

    Article  PubMed  CAS  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium–legume symbiosis. Eur J Biochem 270:1365–1380

    Article  PubMed  CAS  Google Scholar 

  • Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690

    Article  PubMed  CAS  Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Zhong Z, Sun K, Wang H, Zhu J (2006) The quorum-sensing system in a plant bacterium Mesorhizobium huakuii affects growth rate and symbiotic nodulation. Plant Soil V286:53–60

    Article  CAS  Google Scholar 

  • Gonzalez JE, York GM, Walker GC (1996) Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 179:141–146

    Article  PubMed  CAS  Google Scholar 

  • Gray JX, Zhan HJ, Levery SB, Battisti L, Rolfe BG, Leigh JA (1991) Heterologous exopolysaccharide production in Rhizobium sp. strain NGR234 and consequences for nodule development. J Bacteriol 173:3066–3077

    PubMed  CAS  Google Scholar 

  • Heidstra R, Geurts R, Franssen H, Spaink HP, Van Kammen A, Bisseling T (1994) Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol 105:787–797

    PubMed  CAS  Google Scholar 

  • Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp–FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  PubMed  CAS  Google Scholar 

  • Hoang HH, Becker A, Gonzalez JE (2004) The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J Bacteriol 186:5460–5472

    Article  PubMed  CAS  Google Scholar 

  • Hotter GS, Scott DB (1991) Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host. J Bacteriol 173:851–859

    PubMed  CAS  Google Scholar 

  • Kalogeraki VS, Winans SC (1997) Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69–75

    Article  PubMed  CAS  Google Scholar 

  • Kannenberg EL, Brewin NJ (1994) Host–plant invasion by Rhizobium: the role of cell-surface components. Trends Microbiol 2:277–283

    Article  PubMed  CAS  Google Scholar 

  • Krol J, Skorupska A (1997) Identification of genes in Rhizobium leguminosarum bv. trifolii whose products are homologues to a family of ATP-binding proteins. Microbiology 143(Pt 4):1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Laus MC et al (2004) Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra. J Bacteriol 186:6617–6625

    Article  PubMed  CAS  Google Scholar 

  • Mendrygal KE, Gonzalez JE (2000) Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 182:599–606

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New York

  • Niehaus K, Becker A (1998) The role of microbial surface polysaccharides in the rhizobium–legume interaction. Subcell Biochem 29:73–116

    PubMed  CAS  Google Scholar 

  • Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant–microbe associations. Curr Opin Microbiol 7:602–609

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Krol J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7

    Article  PubMed  CAS  Google Scholar 

  • Tan ZY, Xu XD, Wang ET, Gao JL, Martinez-Romero E, Chen WX (1997) Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879

    Article  PubMed  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific, Oxford

    Google Scholar 

  • Wang H, Zhong Z, Cai T, Li S, Zhu J (2004) Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182:520–525

    Article  PubMed  CAS  Google Scholar 

  • Wielbo J, Mazur A, Krol J, Marczak M, Kutkowska J, Skorupska A (2004) Complexity of phenotypes and symbiotic behaviour of Rhizobium leguminosarum biovar trifolii exopolysaccharide mutants. Arch Microbiol 182:331–336

    Article  PubMed  CAS  Google Scholar 

  • Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96:4028–4033

    Article  PubMed  CAS  Google Scholar 

  • Young JP et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Zhong Z, Lai X, Chen WX, Li S, Zhu J (2006) A LuxR/LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation. J Bacteriol 188:1943–1949

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Ansel Hsiao for helpful discussion and critically reviewing the manuscript. This study was supported by the NSFC Fund for Distinguished Young Scholars Fund (30325004) and a NSFC grant (30570011, 30770074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhu.

Additional information

Communicated by Ursula Priefer.

Peng Wang, Zengtao Zhong and Jing Zhou have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Zhong, Z., Zhou, J. et al. Exopolysaccharide biosynthesis is important for Mesorhizobium tianshanense: plant host interaction. Arch Microbiol 189, 525–530 (2008). https://doi.org/10.1007/s00203-007-0345-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0345-3

Keywords

Navigation