Skip to main content
Log in

Growth, osmotic downshock resistance and differentiation of Bacillus subtilis strains lacking mechanosensitive channels

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Previous work has shown that the mechanosensitive (MS) channel of large conductance (MscL) is essential for preventing lysis of Bacillus subtilis log phase cells upon a rapid, severe osmotic downshock. Growing cells of B. subtilis strains lacking MscL and one or more putative MS channel proteins of small conductance (YhdY, YkuT and YfkC) showed even higher sensitivity to an osmotic downshock. The effect was greatest for a strain lacking MscL and YkuT, and a strain lacking all four MS channel proteins had a similar phenotype. These defects were complemented by expression of either MscL or YkuT in trans. All MS channel mutant strains ultimately became resistant to osmotic downshock in stationary phase but at varying times, with mscL ykuT strains taking the longest time to become resistant. Expression of β-galactosidase from gene fusions to lacZ showed modest expression of ykuT and lower levels of expression of yhdY and yfkC when strains were grown in medium containing high salt. Sporulation of all MS channel mutant strains was normal, and the mutant spores germinated normally with l-alanine or dodecylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DPA:

Pyridine-2-6-dicarboxylic acid or dipicolinic acid

LB:

Luria-Bertani medium

MS:

Mechanosensitive

MscL:

Mechanosensitive channel of large conductance

MscS:

Mechanosensitive channel of small conductance

OD600 nm :

Optical density at 600 nm

References

  • Ajouz B, Berrier C, Garrigues A, Besnard M, Ghazi A (1999) Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273:26670–26674

    Article  Google Scholar 

  • Bremer E (2001) Bacillus subtilis and its closest relatives: from genes to cells. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacterial stress responses. American Society for Microbiology, Washington, pp 385–390

    Google Scholar 

  • Connors MJ, Mason JM, Setlow P (1986) Cloning and nucleotide sequence of genes for three small, acid soluble proteins of Bacillus subtilis spores. J Bacteriol 166:417–425

    PubMed  CAS  Google Scholar 

  • Cutting SM, Vander Horn PB (1990) Genetic analysis. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 27–74

    Google Scholar 

  • Edwards MD, Booth IR, Miller S (2004) Gating the bacterial mechanosensitive channels: MscS a new paradigm? Curr Opin Microbiol 7:163–167

    Article  PubMed  CAS  Google Scholar 

  • Ferrari E, Howard SMH, Hoch JA (1985) Effect of sporulation mutations on subtilisin expression, assayed using a subtilisin-β-galactosidase gene fusion. In: Hoch JA, Setlow P (eds) Molecular biology of microbial differentiation. American Society for Microbiology, Washington, pp 181–184

    Google Scholar 

  • Folgering JHA, Moe PC, Schuurman-Wolters GK, Blount P, Poolman B (2005) Lactococcus lactis uses MscL as its principal mechanosensitive channel. J Biol Chem 280:8784–8792

    Article  PubMed  CAS  Google Scholar 

  • Guérout-Fleury AM, Shazand K, Frandsen N, Stragier P (1995) Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167:335–336

    Article  PubMed  Google Scholar 

  • Holtmann G, Bremer E (2004) Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J Bacteriol 186:1683–1693

    Article  PubMed  CAS  Google Scholar 

  • Kung C, Blount P (2004) Channels in microbes: so many holes to fill. Mol Microbiol 53:373–380

    Article  PubMed  CAS  Google Scholar 

  • Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737

    Article  PubMed  CAS  Google Scholar 

  • Loshon CA, Wahome PG, Maciejewski MW, Setlow P (2006) Levels of glycine betaine in growing cells and spores of Bacillus species and lack of effect of glycine betaine on dormant spore resistance. J Bacteriol 188:3153–3158

    Article  PubMed  CAS  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460

    Article  PubMed  CAS  Google Scholar 

  • Martinac B, Adler J, Kung C (1990) Mechanosensitive channels of E. coli activated by amphipaths. Nature 348:261–263

    Article  PubMed  CAS  Google Scholar 

  • Mason JM, Setlow P (1986) Evidence for an essential role for small, acid soluble, spore proteins in the resistance of Bacillus subtilis spores to ultraviolet light. J Bacteriol 167:174–178

    PubMed  CAS  Google Scholar 

  • Moe PC, Blount P, Kung C (1998) Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensition. Mol Microbiol 28:583–592

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Setlow P (1990) Sporulation, germination and outgrowth. In: Harwood CR, Cutting SC (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 391–450

    Google Scholar 

  • Paidhungat M, Setlow B, Driks A, Setlow P (2000) Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol 182:5505–5512

    Article  PubMed  CAS  Google Scholar 

  • Paidhungat M, Ragkousi K, Setlow P (2001) Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca2+-dipicolinate. J Bacteriol 183:4886–4893

    Article  PubMed  CAS  Google Scholar 

  • Perozo E (2006) Gating prokaryotic mechanosensitive channels. Nat Rev Mol Cell Biol 7:109–19

    Article  PubMed  CAS  Google Scholar 

  • Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183:5617–5631

    Article  PubMed  CAS  Google Scholar 

  • Pivetti CD, Yen MR, Miller S, Busch W, Tseng YH, Booth IR, Saier MH (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67:66–85

    Article  PubMed  CAS  Google Scholar 

  • Powell JF, Strange RE (1953) Biochemical changes occurring during germination of bacterial spores. Biochem J 54:205–209

    PubMed  CAS  Google Scholar 

  • Price CW (2000) Protective function and regulation of the general stress responses in Bacillus subtilis and related gram-positive bacteria. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM, Washington, pp 179–197

    Google Scholar 

  • Priest FG (1993) Systematics and ecology of Bacillus. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, pp 3–16

    Google Scholar 

  • Ruzal SM, López C, Rivas E, Sánchez-Rivas C (1998) Osmotic strength blocks sporulation at stage II by impeding activation of early sigma factors in Bacillus subtilis. Curr Microbiol 36:75–79

    Article  PubMed  CAS  Google Scholar 

  • Schleyer M, Schmid R, Bakker EP (1993) Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch Microbiol 160:424–431

    Article  PubMed  CAS  Google Scholar 

  • Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556

    Article  PubMed  CAS  Google Scholar 

  • Setlow B, Cowan AE, Setlow P (2003) Germination of spores of Bacillus subtilis with dodecylamine. J Appl Microbiol 95:637–648

    Article  PubMed  CAS  Google Scholar 

  • Sterlini JM, Mandelstam J (1969) Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113:29–37

    PubMed  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner F, Kung C (1994) A large conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268

    Article  PubMed  CAS  Google Scholar 

  • Vepachedu VR, Setlow P (2005) Localization of SpoVAD to the inner membrane of spores of Bacillus subtilis. J Bacteriol 187:5677–5682

    Article  PubMed  CAS  Google Scholar 

  • Vepachedu VR, Setlow P (2007) Role of SpoVA proteins in release of dipicolinic acid during germination of Bacillus subtilis spores triggered by dodecylamine or lysozyme. J Bacteriol 189:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Wahome PG, Setlow P (2006) The synthesis and role of the mechanosensitive channel of large conductance in growth and differentiation of Bacillus subtilis. Arch Microbiol 186:377–388

    Article  PubMed  CAS  Google Scholar 

  • Wipat A, Harwood CR (1999) The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol Ecol 28:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Army Research Office. We are grateful to Fabrizio Arigoni for supplying plasmid pRDC18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Setlow.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahome, P.G., Setlow, P. Growth, osmotic downshock resistance and differentiation of Bacillus subtilis strains lacking mechanosensitive channels. Arch Microbiol 189, 49–58 (2008). https://doi.org/10.1007/s00203-007-0292-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0292-z

Keywords

Navigation