Skip to main content
Log in

Isolation of magnetotactic bacterium WM-1 from freshwater sediment and phylogenetic characterization

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The magnetotactic bacterium was isolated from freshwater sediment from North Lake of Wuhan. The isolate, designated WM-1, was Gram-negative, helical shaped, and studied by means of electron microscopy. The strain WM-1 was 0.2-0.4 μm in diameter and 3–4 μm in length. The DNA G + C content was found to be 65.7 mol%. Phylogenetic analysis of the 16S rDNA gene (Accession number DQ899734 in GeneBank) revealed that this isolate was a member ofαsubdivision of the Proteobacteria. Strain WM-1 was closely related (97.7%) to Magnetospirillum sp. AMB-1. Randomly amplified polymorphic DNA analysis showed that these two strains were in fact different strains. Electron diffraction patterns of WM-1 magnetosomes indicated that the magnetosomes were composed of magnetite. The magnetosomes from WM-1 were cuboidal in shape as observed by electron microscopy. Statistical analysis of magnetite crystals from WM-1 showed narrow asymmetric size distribution. The average number of magnetosomes in each WM-1 bacterium was 8 ± 3.4. The average length of magnetosomes in WM-1 was 54 ± 12.3 nm and the average width is 43 ± 10.9 nm. These data showed that the grains in WM-1 were single-domain crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bazylinski DA, Frankel RB (2003) Biologically controlled mineralization in prokaryotes. Rev Miner Geochem 54:217–247

    Article  CAS  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    Article  PubMed  CAS  Google Scholar 

  • Blakemore RP, Blakemore NA, Bazylinski DA, Moench TT (1989) Bergey’s manual of systematic bacteriology. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Magnetotactic bacteria, vol 3. Williams and Wilkins, Baltimore, pp 1882–1889

  • Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure of a freshwater magnetic -spirillum in chemically defined medium. J Bacteriol 140:720–729

    PubMed  CAS  Google Scholar 

  • Buntjer J (2000) Phyltools- a tool for the processing and distance calculation for phylogenetic data sets. Available via http://www.dpw.wau.nl/pv/PUB/pt/

  • Burgess JG, Kawaguchi R, Sakaguchi T, Thornhill RH, Matsunaga T (1993) Evolutionary relationship among Magnetospirillum strains inferred from phylogenetic analysis of 16s rDNA sequences. J Bacteriol 175:6689–6694

    PubMed  CAS  Google Scholar 

  • Buseck PR, Dunin-Borkowski RE, Devouard B, Frankel RB, McCartney MR, Midgley PA, Pósfai M, Weyland M (2001) Magnetite morphology and life on Mars. Proc Natl Acad Sci USA 98:13490–13495

    Article  PubMed  CAS  Google Scholar 

  • Butler RF, Banerjee SK (1975) Theoretical single-domain grain size range in magnetite and titanomagnetite. J Geophys Res 80:4049–4058

    Article  CAS  Google Scholar 

  • De Ley J (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754

    PubMed  Google Scholar 

  • Dubbels BL, Dispirito AA, Morton JD, Semrau JD, Neto JNE, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931–2945

    Article  PubMed  CAS  Google Scholar 

  • Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein mamk. Science 311:242–245

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software formolecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  PubMed  CAS  Google Scholar 

  • Lang C, Schüler D (2006) Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J Phys Condens Matter 18:S2815–S2828

    Article  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Sakaguchi T, Tadokoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651–655

    Article  CAS  Google Scholar 

  • Meldrum FC, Mann S, Heywood BR, Frankel RB, Bazylinski DA (1993) Electron microscopy study of magnetosomes in two cultured vibriod magnetotactic bacteria. Proc R Soc Lond B 251:237–242

    Article  Google Scholar 

  • Meyer SA, Schleifer KH (1975) Rapid procedure for the approximate determination of the deoxyribonucleic acid base composition of micrococci, staphylococci, and other bacteria. Int J Syst Bacteriol 25:383–385

    Article  CAS  Google Scholar 

  • Notredame C, Holme L, Higgins DG (2000) T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Pradel N, Santini CL, Alain B, Fukumori Y, Wu LF (2006) Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc Natl Acad Sci USA 103:17485–17489

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Scheffe A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in a magnetotactic bacteria. Nature 440:110–114

    Article  CAS  Google Scholar 

  • Schüler D, Köhler M (1992) The isolation of a new magnetic spirillum. Zentralbl Mikrobiol 147:150–151

    Google Scholar 

  • Schüler D, Spring S, Bazylinski DA (1999) Improved technique for isolation of magnetotactic spririlla from a freshwater sediment and their phylogenetic characterization. Syst Appl Microbiol 22:466–471

    PubMed  Google Scholar 

  • Weiss BP, Kim SS, Kirschvink JL, Kopp RE, Sankaran M, Kobayashi A, Komeili A (2004) Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc Natl Acad Sci USA 101:8281–8284

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tong-Ruei Li (Department of Genetics, Yale University School of Medicine, USA) for helpful suggestions, advice and comments. We are grateful to Ms. Xiu-hua Yuan (Insitute of Hydrobiology, Chinese Academy of Sciences, China) and Professor Ping-he Li (The Technique Center of Wuhan Iron and Steel (Group) Corporation, China) for the TEM assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Longjiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenbing, L., Longjiang, Y., Pengpeng, Z. et al. Isolation of magnetotactic bacterium WM-1 from freshwater sediment and phylogenetic characterization. Arch Microbiol 188, 97–102 (2007). https://doi.org/10.1007/s00203-007-0231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0231-z

Keywords

Navigation