Skip to main content
Log in

The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The biosynthesis of the β-lactam antibiotic penicillin in Aspergillus nidulans is catalysed by three enzymes that are encoded by the genes acvA, ipnA and aatA. Several studies have indicated that these genes are controlled by a complex regulatory network, including a variety of cis-acting DNA elements and regulatory factors. Until now, however, relatively little information is available on external signals and their transmission influencing the expression of the structural genes. Here, we show that the light-dependent regulator velvet A (VeA) acts as a repressor on the penicillin biosynthesis, mainly via repression of the acvA gene. Expression of a regulatable alcAp-veA gene fusion in an A. nidulans strain carrying, in addition, acvAp-uidA and ipnAp-lacZ gene fusions indicated that under alcAp-inducing conditions, penicillin titres and expression of acvAp-uidA were drastically reduced compared with untransformed wild-type strains. The same level of repression was found irrespective of whether the alcAp-veA gene fusion was expressed in a veA1 or ΔveA background, with or without light. The expression of the ipnAp-lacZ gene fusion was only moderately affected indicating a less prominent effect. These findings were confirmed by the analysis of a regulatable niiAp-veA gene fusion. Under niiAp-inducing conditions, penicillin titres and acvAp-uidA expression were much lower than in untransformed wild-type strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ballance DJ, Turner G (1985) Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36:321–331

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–252

    Article  PubMed  CAS  Google Scholar 

  • Brakhage AA (1998) Molecular regulation of β-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62:547–585

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Van den Brulle J (1995) Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes. J Bacteriol 177:2781–2788

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Browne P, Turner G (1992) Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol 174:3789–3799

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Spröte P, Al-Abdallah Q, Gehrke A, Plattner H, Tüncher A (2004) Regulation of penicillin biosynthesis in filamentous fungi. Adv Biochem Eng Biotechnol 88:45–90

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Al-Abdallah Q, Tüncher A, Spröte P (2005) Evolution of β-lactam biosynthesis genes and recruitment of trans-acting factors. Phytochemistry 66:1200–1210

    Article  PubMed  CAS  Google Scholar 

  • Calvo AM, Bok J, Brooks W, Keller NP (2004) veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 70:4733–4739

    Article  PubMed  CAS  Google Scholar 

  • Champe SP, Kurtz MB, Yager LN, Butnick NJ, Axelrod DE (1981) Spore formation in Aspergillus nidulans: competence and other developmental processes. In: Hohl HR, Turian G (eds) The fungal spores: morphogenic controls. Academic, New York, pp 255–276

    Google Scholar 

  • Duran RM, Cary JW, Calvo AM (2007) Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl Microbiol Biotechnol 73:1158–1168

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Peñalva MA (1992) Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol Microbiol 6:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Tilburn J, Arst HN Jr, Peñalva MA (1993) pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12:3947–3956

    PubMed  CAS  Google Scholar 

  • Evers ME, Trip H, van den Berg MA, Bovenberg RAL, Driessen AJM (2004) Compartmentalization and transport in β-lactam antibiotics biosynthesis. Adv Biochem Eng Biotechnol 88:111–136

    PubMed  CAS  Google Scholar 

  • Fernández-Cañón JM, Peñalva MA (1995) Overexpression of two penicillin structural genes in Aspergillus nidulans. Mol Gen Genet 246:110–118

    Article  PubMed  Google Scholar 

  • Jeong HY, Song MH, Back JH, Han DM, Wu X, Monnier V, Jahng KY, Chae KS (2002) The veA gene is necessary for the inducible expression by fructosyl amines of the Aspergillus nidulans faoA gene encoding fructosyl amino acid oxidase (amadoriase, EC 1.5.3). Arch Microbiol 178:344–350

    Article  PubMed  CAS  Google Scholar 

  • Jeong HY, Kim H, Han DM, Jahng KY, Chae KS (2003) Expression of the mnpA gene that encodes the mannoprotein of Aspergillus nidulans is dependent on fadA and flbA as well as veA. Fungal Genet Biol 38:228–236

    Article  PubMed  CAS  Google Scholar 

  • Käfer E (1965) Origins of translocations in Aspergillus nidulans. Genetics 52:217–232

    PubMed  Google Scholar 

  • Kato N, Brooks W, Calvo AM (2003) The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell 2:1178–1186

    Article  PubMed  CAS  Google Scholar 

  • Kennedy J, Turner G (1996) δ-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253:189–197

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Han KY, Kim KJ, Han DM, Jahng KY, Chae KS (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80

    Article  PubMed  CAS  Google Scholar 

  • Krappmann S, Bayram O, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Euk Cell 4:1298–1307

    Article  CAS  Google Scholar 

  • Li S, Myung K, Guse D, Donkin B, Proctor RH, Grayburn WS, Calvo AM (2006) FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol 62:1418–1432

    Article  PubMed  CAS  Google Scholar 

  • Litzka O, Papagiannopolous P, Davis MA, Hynes MJ, Brakhage AA (1998) The penicillin regulator PENR1 of Aspergillus nidulans is a HAP-like transcriptional complex. Eur J Biochem 251:758–767

    Article  PubMed  CAS  Google Scholar 

  • MacCabe AP, Riach MB, Unkles SE, Kinghorn JR (1990) The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 9:279–287

    PubMed  CAS  Google Scholar 

  • Mingot JM, Peñalva MA, Fernández-Cañón JM (1999) Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J Biol Chem 274:14545–14550

    Article  PubMed  CAS  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    Article  PubMed  CAS  Google Scholar 

  • Peñalva MA, Rowlands RT, Turner G (1998) The optimization of penicillin biosynthesis in fungi. Trends Biotechnol 16:483–489

    Article  PubMed  Google Scholar 

  • Pérez-Esteban B, Gómez-Pardo E, Peñalva MA (1995) A lacZ reporter fusion method for the genetic analysis of regulatory mutations in pathways of fungal secondary metabolism and its application to the Aspergillus nidulans penicillin pathway. J Bacteriol 177:6069–6076

    PubMed  Google Scholar 

  • Punt PJ, Strauss J, Smit R, Kinghorn JR, van den Hondel CAMJJ, Scazzocchio C (1995) The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NirA binding sites which act bidirectionally. Mol Cell Biol 15:5688–5699

    PubMed  CAS  Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Schmitt EK, Hoff B, Kuck U (2004) Regulation of cephalosporin biosynthesis. Adv Biochem Eng Biotechnol 88:1–43

    PubMed  CAS  Google Scholar 

  • Schmoll M, Franchi L, Kubicek CP (2005) Envoy, a PAS/LOV domain protein of Hypocrea jecorina (anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4:1998–2007

    Article  PubMed  CAS  Google Scholar 

  • Stinnett SM, Espeso EA, Cobeno L, Araujo-Bazan L, Calvo AM (2007) Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol Microbiol 63:242–255

    Article  PubMed  CAS  Google Scholar 

  • Then Bergh (1997) Identifizierung und charakterisierung cis-aktiver DNA-sequenzen der Penicillinbiosynthesegene acvA und ipnA von Aspergillus nidulans. PhD thesis, Ludwig-Maximilians-Universität München, Germany

  • Then Bergh K, Brakhage AA (1998) Regulation of the Aspergillus nidulans penicillin biosynthesis gene acvA (pcbAB) by amino acids: implication for involvement of transcription factor PACC. Appl Environ Microbiol 64:843–849

    PubMed  CAS  Google Scholar 

  • Then Bergh K, Litzka O, Brakhage AA (1996) Identification of a major cis-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans. J Bacteriol 178:3908–3916

    Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peñalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790

    PubMed  CAS  Google Scholar 

  • Todd RB, Hynes MJ, Andrianopoulos A (2006) The Aspergillus nidulans rcoA gene is required for veA-dependent sexual development. Genetics 174:1685–1688

    Article  PubMed  CAS  Google Scholar 

  • Tüncher A, Spröte P, Gehrke A, Brakhage AA (2005) The CCAAT-binding complex of eukaryotes: evolution of a second NLS in the HapB subunit of the filamentous fungus Aspergillus nidulans despite functional conservation at the molecular level between yeast, A. nidulans and human. J Mol Biol 352:517–533

    Article  PubMed  Google Scholar 

  • Vienken K, Scherer M, Fischer R (2005) The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169:619–630

    Article  PubMed  CAS  Google Scholar 

  • Waring RB, May GS, Morris NR (1989) Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79:119–130

    Article  PubMed  CAS  Google Scholar 

  • Weidner G, d’Enfert C, Koch A, Mol PC, Brakhage AA (1998) Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5’-monophosphate decarboxylase. Curr Genet 33:378–385

    Article  PubMed  CAS  Google Scholar 

  • Yager LN (1992) Early developmental events during asexual and sexual sporulation in Aspergillus nidulans. In: Bennett JW, Klich MA (eds) Aspergillus: biology and industrial applications. Butterworth-Heinemann, Boston, pp 19–41

    Google Scholar 

Download references

Acknowledgments

We are grateful to Sybille Traupe and Christina Täumer for the excellent technical assistance. We thank Sven Krappmann for providing the A. nidulans strain ΔveA and Keon-Sang Chae for providing the strain OVAR5. This research was supported by the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm 1152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel A. Brakhage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spröte, P., Brakhage, A.A. The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. Arch Microbiol 188, 69–79 (2007). https://doi.org/10.1007/s00203-007-0224-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0224-y

Keywords

Navigation