Skip to main content
Log in

Identification of promoters recognized by RNA polymerase containing Mycobacterium tuberculosis stress-response sigma factor σF

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A previously optimized Escherichia coli two-plasmid system was used to identify Mycobacterium tuberculosis promoters recognized by RNA polymerase containing the M. tuberculosis stress response sigma factor σF. The method allowed the identification of five new σF-dependent promoters. Transcriptional start points of the promoters were determined by high-resolution S1-nuclease mapping using RNA prepared from E. coli containing the two-plasmid system. The promoters were confirmed by an in vitro transcription assay. The Mycobacterium smegmatis and Mycobacterium tuberculosis core RNA polymerases, after complementation with σF, were able to recognize all the five promoters. All the promoters contained sequences highly similar to the sequence of the previously identified M. tuberculosis σF-dependent promoter, usfXp1. Comparison of the promoters revealed a σF consensus sequence GtTtga-N14–18–GGGTAT. The σF-dependent promoters may govern expression of genes encoding a transcription regulator homologous to the response regulators of bacterial two-component signal transduction systems and proteins with unknown function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DO, Seidman JS, Smith JA, Struhl K (1995) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Beaucher J, Rodrique S, Jacques P-E, Smith I, Brzezinski R, Gaudreau L (2002) Novel Mycobacterium tuberculosis anti-σ-factor antagonists control σF activity by distinct mechanism. Mol Microbiol 45:1527–1540

    Article  PubMed  CAS  Google Scholar 

  • Beier D, Gross R (2006) Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 9:143–152

    Article  PubMed  CAS  Google Scholar 

  • Bischoff M, Dunman P, Kormanec J, Macapagal D, Murphy E, Mounts W, Berger-Bächi B, Projan S (2004) Microarray-based analysis of the Staphylococcus aureus σB-regulon. J Bacteriol 186:4085–4099

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Gomez J, Bishai WR (2000a) Microbial transcription regulation in stationary phase. In: Hatfull GF, Jacobs Jr WR (eds) Molecular genetics of mycobacteria. American Society for Microbiology Press, Washington, pp 149–156

    Google Scholar 

  • Chen P, Ruiz RE, Li Q, Silver RF, Bishai WR (2000b) Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternative sigma factor gene, sigma F. Infect Immun 68:5575–5580

    Article  CAS  Google Scholar 

  • Clark-Curtiss JE, Haydel SE (2003) Molecular genetics of Mycobacterium tuberculosis pathogenesis. Annu Rev Microbiol 57:517–549

    Article  PubMed  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  • De Maio J, Zhang Y, Ko C, Young DB, Bishai WR (1996) A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 93:2790–2794

    Article  Google Scholar 

  • De Maio J, Zhang Y, Ko C, Bishai WR (1997) Mycobacterium tuberculosis sigF is part of a gene cluster with similarities to the Bacillus subtilis sigF and sigB operons. Tuber Lung Dis 78:3–12

    Article  Google Scholar 

  • Dombroski AJ, Walter WA, Gross CA (1993) Amino-terminal amino acids modulate σ-factor DNA binding activity. Genes Dev 7:2446–2455

    PubMed  CAS  Google Scholar 

  • Geiman DE, Kaushal D, Ko C, Tyagi S, Manabe YC, Schroeder BG, Fleischmann RD, Morrison NE, Converse PJ, Chen P, Bishai WR (2004) Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking the SigF. Alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infect Immun 72:1733–1745

    Article  PubMed  CAS  Google Scholar 

  • Graham JE, Clark-Curtis R (1999) Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human magrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA 96:11554–11559

    Article  PubMed  CAS  Google Scholar 

  • Hecker M, Scumann W, Volker U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428

    Article  PubMed  CAS  Google Scholar 

  • Homerova D, Bischoff M, Dumolin A, Kormanec J (2004a) Optimization of a two-plasmid system for the identification of promoters recognized by RNA polymerase containing Staphylococcus aureus alternative sigma factor σB. FEMS Microbiol Lett 232:173–179

    Article  CAS  Google Scholar 

  • Homerova D, Surdova K, Kormanec J (2004b) Optimization of two-plasmid system for the identification of promoters recognized by RNA polymerase containing Mycobacterium tuberculosis stress response σ factor, σF. Folia Microbiol 49:685–691

    CAS  Google Scholar 

  • Jacques J-F, Rodrigue S, Brzezinski R, Gaudreau L (2006) A recombinant Mycobacterium tuberculosis in vitro transcription system. FEMS Microbiol Lett 255:140–147

    Article  PubMed  CAS  Google Scholar 

  • Kormanec J (2001) Analyzing the developmental expression of sigma factors with S1-nuclease mapping. In: Chein CH (ed) Nuclease methods and protocols: methods in molecular biology, vol 160. Humana Press, Totowa, pp 481–494

  • Kormanec J, Sevcikova B (2002) Stress-response sigma factor σH directs expression of the gltB gene encoding glutamate synthase in Streptomyces coelicolor A3(2). Biochim Biophys Acta 1577:149–154

    PubMed  CAS  Google Scholar 

  • Kormanec J, Homerova D, Sevcikova B, Rezuchova B (2001a) A method for isolation of small DNA fragments from agarose and polyacrylamide gels. Anal Biochem 293:138–139

    Article  CAS  Google Scholar 

  • Kormanec J, Novakova R, Homerova D, Rezuchova B (2001b) Streptomyces aureofaciens sporulation-specific sigma factor σrpoZ directs expression of a gene encoding protein similar to hydrolases involved in degradation of the lignin-related biphenyl compounds. Res Microbiol 152:883–888

    Article  CAS  Google Scholar 

  • Kormanec J, Sevcikova B, Halgasova N, Knirschova R, Rezuchova B (2000) Identification and transcriptional characterization of the gene encoding the stress-response σ factor σH in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 189:31–38

    PubMed  CAS  Google Scholar 

  • Manganelli R, Dubnau E, Tyagi S, Kramer FR, Smith I (1999) Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol 31:715–724

    Article  PubMed  CAS  Google Scholar 

  • Manganelli R, Proveddi R, Rodrique S, Beaucher J, Gaudreus L, Smith I (2004) σ factors and global gene regulation in Mycobacterium tuberculosis. J Bacteriol 186:895–902

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Hackert E, Stock AM (1997) Structural relationships in the OmpR family of winged- helix transcription factors. J Mol Biol 269:301–312

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labelled DNA with base specific chemical cleavages. Methods Enzymol 65:449–560

    Google Scholar 

  • Nadon CA, Bowen BM, Wiedmann M, Boor KJ (2002) σB contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun 70:3948–3952

    Article  PubMed  CAS  Google Scholar 

  • Novakova R, Sevcikova B, Kormanec J (1998) A method for the identification of promoters recognized by RNA polymerase containing a particular sigma factor: cloning of a developmentally regulated promoter and corresponding gene directed by the Streptomyces aureofaciens sigma factor RpoZ. Gene 208:43–50

    Article  PubMed  CAS  Google Scholar 

  • Park SF, Stirling DA, Hulton CSJ, Booth IR, Higgins CF, Stewart GSAB (1989) A novel, non-invasive promoter probe vector: cloning of the osmoregulated proU promoter of Escherichia coli K12. Mol Microbiol 3:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Raman S, Hazra R, Dascher CC, Husson RN (2004) Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence. J Bacteriol 186:6605–6616

    Article  PubMed  CAS  Google Scholar 

  • Rezuchova B, Miticka H, Homerova D, Roberts M, Kormanec J (2003) New members of the Escherichia coli σE regulon identified by a two-plasmid system. FEMS Microbiol Lett 225:1–7

    Article  PubMed  CAS  Google Scholar 

  • Sevcikova B, Kormanec J (2002) Activity of the Streptomyces coelicolor stress-response sigma factor σH is regulated by an anti-sigma factor. FEMS Microbiol Lett 209:229–235

    PubMed  CAS  Google Scholar 

  • Sevcikova B, Mazurakova V, Kormanec J (2005) Characterization of the alternative sigma factor in Streptomyces coelicolor A3(2). Folia Microbiol 50:47–58

    Article  CAS  Google Scholar 

  • Skovierova H, Rowley G, Rezuchova B, Homerova D, Lewis C, Roberts M, Kormanec J (2006) Identification of the σE regulon of Salmonella enterica serovar. Typhimurium Microbiol SGM 152:1347–1359

    Article  CAS  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  PubMed  CAS  Google Scholar 

  • Waagmeester A, Thompson J, Reyrat J-M (2005) Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol 13:505–509

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. P. J. Brennan and Dr. J. T. Belisle (Colorado State University, Fort Collins, CO, USA; NIH, NIAID Contract N01 AI-75320) for chromosomal DNA from M. tuberculosis H37Rv, and to Dr. M.K.Winson (University of Nottingham, UK) for plasmid pSB40. We would like to thank Dr. S. Rodrigue (University of Sherbrooke, Canada) for plasmids pSR52, pJF09, and pJF10. We are grateful also to Eva Kutejova and Beata Sevcikova for help in isolation of M. smegmatis RNA polymerase. This work was supported by a Grant 2/6010/26 from Slovak Academy of Sciences and sponsored by the US—Slovak Science and Technology joint fund under project number 032/2001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kormanec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homerova, D., Surdova, K., Mikusova, K. et al. Identification of promoters recognized by RNA polymerase containing Mycobacterium tuberculosis stress-response sigma factor σF . Arch Microbiol 187, 185–197 (2007). https://doi.org/10.1007/s00203-006-0185-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0185-6

Keywords

Navigation