Skip to main content
Log in

The synthesis and role of the mechanosensitive channel of large conductance in growth and differentiation of Bacillus subtilis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A translational lacZ fusion of the Bacillus subtilis mscL gene that encodes the mechanosensitive channel of large conductance (MscL) was expressed at significant levels during log phase growth of B. subtilis, and the level of mscLlacZ expression was increased 1.5-fold by growth in medium with high salt (1 M NaCl). However, in growth media with either low or high salt, mscLlacZ expression fell drastically beginning in the late log phase of growth, and fell to even lower levels during sporulation, although a significant amount of β-galactosidase from mscL to lacZ was accumulated in the developing spore. Deletion of mscL had no effect on B. subtilis growth, sporulation or subsequent spore germination. The ΔmscL strain also grew as well as the wild-type parental strain in medium with 1.2 M NaCl. While log phase wild-type cells grown with 1.2 M NaCl survived a rapid 0.9 M osmotic downshift, log phase ΔmscL cells rapidly lost viability and lysed when subjected to this same osmotic downshift. However, by the early stationary phase of growth, ΔmscL cells had become resistant to a 0.9 M osmotic downshift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

McsL:

The mechanosensitive channel of large conductance

MS:

Mechanosensitive

DPA:

Dipicolinic acid

Ca–DPA:

a 1:1 chelate of Ca2+ and DPA

MPa:

MegaPascals

References

  • Atluri S, Ragkousi K, Cortezzo DE, Setlow P (2006) Co-operativity between different nutrient receptors in germination of spores of Bacillus subtilis and reduction of this co-operativity by alterations in the GerB receptor. J Bacteriol 188:28–36

    Article  PubMed  CAS  Google Scholar 

  • Berrier C, Besnard M, Ajouz B, Coulombe A, Ghazi A (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 151:175–187

    Article  PubMed  CAS  Google Scholar 

  • Black EP, Koziol-Dube K, Guan D, Wei J, Setlow B, Cortezzo DE, Hoover DG, Setlow P (2005) Factors influencing the germination of Bacillus subtilis spores via the activation of nutrient germinant receptors by high pressure. Appl Environ Microbiol 71:5879–5887

    Article  PubMed  CAS  Google Scholar 

  • Blount P, Schroeder MJ, Kung C (1997) Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J Biol Chem 272:32150–32157

    Article  PubMed  CAS  Google Scholar 

  • Britton RA, Eichenberger P, Gonzalez-Pastor JE, Fawcett P, Monson R, Losick R, Grossman AD (2002) Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J Bacteriol 184:4881–4890

    Article  PubMed  CAS  Google Scholar 

  • Edwards MD, Booth IR, Miller S (2004) Gating the bacterial mechanosensitive channels: MscS a new paradigm? Curr Opin Microbiol 7:163–167

    Article  PubMed  CAS  Google Scholar 

  • Eichenberger P, Jensen ST, Conlon EM, van Ooij C, Silvaggi J, Gonzalez-Pastor JE, Fujita M, Ben-Yehuda S, Stragier P, Liu JS, Losick R (2003) The σE regulon and the identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 327:945–972

    Article  PubMed  CAS  Google Scholar 

  • Fawcett P, Eichenberger P, Losick R, Youngman P (2000) The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci USA 97: 8063–8068

    Article  PubMed  CAS  Google Scholar 

  • Ferrari E, Howard SMH, Hoch J (1985) Effect of sporulation mutations on subtilisin expression, assayed using a subtilisin-β-galactosidase gene fusion. In: Hoch JA, Setlow P (eds) Molecular biology of microbial differentiation. American Society for Microbiology, Washington, pp 181–184

    Google Scholar 

  • Folgering JHA, Moe PC, Schuurman-Wolters GK, Blount P, Poolman B (2005) Lactococcus lactis uses MscL as its principal mechanosensitive channel. J Biol Chem 280:8784–8792

    Article  PubMed  CAS  Google Scholar 

  • LeDeaux JR, Grossman AD (1995) Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to sporulation sensor kinases KinA and KinB in Bacillus subtilis. J Bacteriol 177:166–175

    PubMed  CAS  Google Scholar 

  • Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Moe PC, Chandrasekaran S, Booth IR, Blount P (2002) Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J 21:5323–5320

    Article  PubMed  CAS  Google Scholar 

  • Loshon CA, Wahome PG, Maciejewski MW, Setlow P (2006) Levels of glycine betaine in growing cells and spores of Bacillus species and lack of effect of glycine betaine on dormant spore resistance. J Bacteriol 188:3153–3158

    Article  PubMed  CAS  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460

    Article  PubMed  CAS  Google Scholar 

  • Mason JM, Hackett RH, Setlow P (1988) Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions. J Bacteriol 170:239–244

    PubMed  CAS  Google Scholar 

  • Moe PC, Blount P, Kung C (1998) Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol Microbiol 28:583–592

    Article  PubMed  CAS  Google Scholar 

  • Molle V, Fujita M, Jensen ST, Eichenberger P, Gonzalez-Pastor JE, Liu JS, Losick R (2003) The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50:1683–1701

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Setlow P (1990) Sporulation, germination and outgrowth. In: Harwood CR, Cutting SC (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 391–450

    Google Scholar 

  • Paidhungat M, Setlow B, Driks A, Setlow P (2000) Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol 182:5505–5512

    Article  PubMed  CAS  Google Scholar 

  • Paidhungat M, Ragkousi K, Setlow P (2001) Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca2+-dipicolinate. J Bacteriol 183:4886- 4893

    Article  PubMed  CAS  Google Scholar 

  • Paidhungat M, Setlow B, Daniels WB, Hoover D, Papafragkou E, Setlow P (2002) Mechanism of initiation of germination of spores of Bacillus subtilis by pressure. Appl Environ Microbiol 68:3172–3175

    Article  PubMed  CAS  Google Scholar 

  • Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183:5617–5631

    Article  PubMed  CAS  Google Scholar 

  • Pivetti CD, Yen MR, Miller S, Busch W, Tseng YH, Booth IR, Saier MH (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67:66–85

    Article  PubMed  CAS  Google Scholar 

  • Price CW (2000) Protective function and regulation of the general stress response in Bacillus subtilis and related gram-positive bacteria. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, pp. 179–197

    Google Scholar 

  • Schleyer M, Schmid R, Bakker EP (1993) Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch Microbiol 160:424–431

    Article  PubMed  CAS  Google Scholar 

  • Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556

    Article  PubMed  CAS  Google Scholar 

  • Setlow B, Cowan AE, Setlow P (2003) Germination of spores of Bacillus subtilis with dodecylamine. J Appl Microbiol 95:637–648

    Article  PubMed  CAS  Google Scholar 

  • Steil L, Serrano M, Henriques AO, Völker U (2005) Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151:399–420

    Article  PubMed  CAS  Google Scholar 

  • Sterlini JM, Mandelstam J (1969) Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113:29–37

    PubMed  CAS  Google Scholar 

  • Stokes NR, Murray HD, Subramaniam C, Gourse RL, Louis P, Bartlett WB, Miller S, Booth IR (2003) A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. Proc Natl Acad Sci USA 100:15959–15964

    Article  PubMed  CAS  Google Scholar 

  • Szabó I, Petronilli V, Zoratti M (1992) A patch-clamp study of Bacillus subtilis. Biochim Biophys Acta 112:29–38

    Google Scholar 

  • Tovar-Rojo F, Chander M, Setlow B, Setlow P (2002) The products of the spoVA operon are involved in dipicolinic acid uptake into developing spores of Bacillus subtilis. J Bacteriol 184:584–587

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Setlow B, Conlon BEM, Lyon JL, Imamura D, Sato T, Setlow P, Losick R, Eichenberger P (2006) The forespore line of gene expression in Bacillus subtilis. J Mol Biol 358:16–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Army Research Office and the National Institutes of Health. We are grateful for the assistance of Barbara Setlow in assessing spore germination with Ca–DPA, and to Jie Wei for high-pressure treatments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Setlow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahome, P.G., Setlow, P. The synthesis and role of the mechanosensitive channel of large conductance in growth and differentiation of Bacillus subtilis . Arch Microbiol 186, 377–383 (2006). https://doi.org/10.1007/s00203-006-0152-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0152-2

Keywords

Navigation