Skip to main content

Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum

Abstract

A symbiotic green sulfur bacterium, strain CaD, was isolated from an enrichment culture of the phototrophic consortium “Chlorochromatium aggregatum”. The capability of the epibiont to grow in pure culture indicates that it is not obligately symbiotic. Cells are Gram-negative, nonmotile, rod-shaped and contain chlorosomes. Strain CaD is obligately anaerobic and photolithoautotrophic, using sulfide as electron donor. Acetate and peptone are photoassimilated in the presence of sulfide and hydrogencarbonate. Photosynthetic pigments contain bacteriochlorophylls a and c, and γ-carotene and OH-γ-carotene glucoside laurate as the dominant carotenoids. In cells from pure cultures, chlorosomes are equally distributed along the inner face of the cytoplasmic membrane. In contrast, the distribution of the chlorosomes in symbiotic epibiont cells is uneven, with chlorosomes being entirely absent at the site of attachment to the central bacterium. The symbiotic epibiont cells display a conspicuous additional layered structure at the attachment site. The G + C content of genomic DNA of strain CaD is 46.7 mol%. On the basis of 16S rRNA sequence comparison, the strain is distantly related to Chlorobium species within the green sulfur bacteria phylum (≤94.6% sequence homology). The novel isolate is therefore described as a novel species within the genus Chlorobium, Chlorobium chlorochromatii.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

BChl:

Bacteriochlorophyll

Bphe:

Bacteriopheophytin

C.:

Chlorochromatium

Cba.:

Chlorobaculum

Chl. :

Chlorobium

DGGE:

Denaturing gradient gel electrophoresis

[E, E] BChlc F :

8,12-diethyl Bchlc esterified with farnesol (analogously: [M] methyl [Pr] propyl [I] isobutyl)

References

  • Airs RL, Atkinson JE Keely BJ (2001) Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. J Chromatogr A 917:167–177

    PubMed  Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Miller W, Lipmann DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Article  CAS  Google Scholar 

  • Bartholomew JW (1962) Variables influencing results and precise definition of steps in Gram staining as a means of standardizing the results obtained. Stain Technol 37:139–155

    PubMed  CAS  Google Scholar 

  • Bast E (2001) Mikrobiologische Methoden. 2nd edn, pp 429

  • Borrego CM, Gerola PD, Miller M, Cox RP (1999) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59:159–166

    Article  CAS  Google Scholar 

  • Bryant RD, Costerton JW, Laishely EJ (1983) The role of Thiobacillus albertis glycocalyx in the adhesion of cells to elemental sulfur. Can J Microbiol 30:81–90

    Google Scholar 

  • Buder J (1914) Chloronium mirabile. Berichte deutsche botanische Gesellschaft 31:80–97

    Google Scholar 

  • Caldwell DR, Bryant MP (1966) Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol 14 794–801

    PubMed  CAS  Google Scholar 

  • Cohen-Bazire G, Pfennig N, Kunizawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207–225

    PubMed  Article  CAS  Google Scholar 

  • Cohen-Bazire G, Sistrom WR (1966) The prokaryotic photosynthetic apparatus. In: Veron LP, Seeley GR (eds) The chlorophylls. Academic, New York, pp 290–298

    Google Scholar 

  • Cunningham RK, Soderstrom TO, Gillman CF, van Oss CJ (1975) Phagocytosis as a surface phenomenon. V. Contact angles and phagocytosis of rough and smooth strains of Salmonella typhimurium, and the influence of specific antiserum. Immunol Commun 4:429–442

    PubMed  CAS  Google Scholar 

  • Fletcher M, Floodgate (1973) An electron-microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. J Gen Microbiol 74:325–334

    CAS  Google Scholar 

  • Frigaard NU, Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67:2538–2544

    PubMed  Article  CAS  Google Scholar 

  • Frigaard NU, Maresca JA, Yunker CE, Jones AD, Bryant DA (2004) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186:5210–5220

    PubMed  Article  CAS  Google Scholar 

  • Fröstl J, Overmann J (1998) Physiology and tactic response of “Chlorochromatium aggregatum”. Arch Microbiol 169:129–135

    PubMed  Article  Google Scholar 

  • Fröstl J, Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch Microbiol 174:50–58

    PubMed  Article  Google Scholar 

  • Gasol JM, Jürgens K, Massana R, Calderón-Paz JI, Pedrós-Alió C (1995) Mass development of Daphnia pulex in a sulphide-rich pond (Lake Cisó). Arch Hydrobiol 132:279–296

    Google Scholar 

  • van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 49–85

    Google Scholar 

  • Gich F, Schubert K, Bruns A, Hoffelner H, Overmann J (2005) Specific detection, isolation and characterization of selected, previously uncultured members of freshwater bacterioplankton. Appl Environ Microbiol 71:5908–5919

    PubMed  Article  CAS  Google Scholar 

  • Glaeser J, Overmann J (2003a) Characterization and in situ carbon metabolism of phototrophic consortia. Appl Environ Microbiol 69:3739–3750

    Article  CAS  Google Scholar 

  • Glaeser J, Overmann J (2003b) The significance of organic carbon compounds for in situ metabolism and chemotaxis of phototrophic consortia. Environ Microbiol 5:1053–1063

    Article  CAS  Google Scholar 

  • Glaeser J, Overmann J (2004) Biogeography, evolution, and diversity of epibionts in phototrophic consortia. Appl Environ Microbiol 70:4821–4830

    PubMed  Article  CAS  Google Scholar 

  • Glaeser J, Bañeras L, Rütters H, Overmann J (2002) Novel bacteriochlorophyll e structures and species-specific variability of pigment composition in green sulfur bacteria. Arch Microbiol 177:475–485

    PubMed  Article  CAS  Google Scholar 

  • Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  • Imhoff JF (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blankenship RE, Madigan MT Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 1–15

    Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olsen protein) gene sequence. Int J Syst Evol Microbiol 53:941–951

    PubMed  Article  CAS  Google Scholar 

  • Kanzler B, Pfannes KR, Vogl K, Overmann J (2005) Molecular characterization of the non-photosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Environ Microbiol 71:7434–7441

    PubMed  Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–112

    PubMed  Article  CAS  Google Scholar 

  • Lauterborn R (1906) Zur Kenntnis der sapropelischen Flora. Allg Bot Z 12:196–197

    Google Scholar 

  • Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger J, Neumair J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568

    PubMed  Article  CAS  Google Scholar 

  • Marshall KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348

    CAS  Google Scholar 

  • Mechsner K (1957) Physiologische und morphologische Untersuchungen an Chlorobacterien. Arch Mikrobiol 26:32–51

    PubMed  Article  CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bact 39:159–167

    CAS  Article  Google Scholar 

  • Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594:33–51

    PubMed  CAS  Google Scholar 

  • Overmann J (2001a) Green sulfur bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey´s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 601–605

    Google Scholar 

  • Overmann J (2001b) Phototrophic consortia. A tight cooperation between non-related eubacteria. In: Seckbach J (ed) Symbiosis. Mechanisms and model systems. Kluwer, Dordrecht, pp. 239–255

    Google Scholar 

  • Overmann J, Pfennig N (1989) Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152:401–406

    Article  CAS  Google Scholar 

  • Overmann J, Pfennig N (1992) Buoyancy regulation and aggregate formation in Amoebobacter purpureus from Mahoney Lake. FEMS Microbiol Ecol 10:67–79

    Article  Google Scholar 

  • Overmann J, Schubert K (2002) Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177:201–208

    PubMed  Article  CAS  Google Scholar 

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 32:150–155

    Google Scholar 

  • Overmann J, Tuschak C, Fröstl J, Sass H (1998) The ecological niche of the consortium “Pelochromatium roseum”. Arch Microbiol 169:120–128

    PubMed  Article  CAS  Google Scholar 

  • Overmann J, Coolen MJL, Tuschak C (1999) Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch Microbiol 172:83–94

    PubMed  Article  CAS  Google Scholar 

  • Pfennig N (1978) Rhodocyclus purpureus gen. nov. and spec. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288

    CAS  Article  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    PubMed  Article  CAS  Google Scholar 

  • Staehelin LA, Fuller RC Drews G (1978) Visualisation of the supramolecular architecture of chlorosomes (chlorobium vesicles) in freeze-fractured cells of Chlorofexus aurantiacus. Arch Microbiol 119:269–277

    Article  Google Scholar 

  • Takaichi S, Wang ZY, Umetsu M, Nozawa T, Shimada K, Madigan MT (1997) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1´,2´-dihydro-γ-carotene, 1′,2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains. Arch Microbiol 168:270–276

    PubMed  Article  CAS  Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–293

    Article  CAS  Google Scholar 

  • Züllig H (1985) Pigmente phototropher Bakterien in Seesedimenten und ihre Bedeutung für die Seenforschung. Schweiz Z Hydrol 47:87–126

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Karin Schubert for support during the HPLC analysis. Silvia Dobler is gratefully acknowledged for skillful technical assistance. This work was supported by a grant of the Deutsche Forschungsgemeinschaft to J. Overmann (grant no. Ov 20/10-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Overmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vogl, K., Glaeser, J., Pfannes, K.R. et al. Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 185, 363–372 (2006). https://doi.org/10.1007/s00203-006-0102-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0102-z

Keywords

  • Chlorobiaceae
  • Chlorobium
  • Symbiosis
  • Phototrophic consortia
  • Carotenoids
  • Chlorochromatium aggregatum