Advertisement

Archives of Microbiology

, Volume 185, Issue 5, pp 363–372 | Cite as

Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum

  • Kajetan Vogl
  • Jens Glaeser
  • Kristina R. Pfannes
  • Gerhard Wanner
  • Jörg Overmann
Original Paper

Abstract

A symbiotic green sulfur bacterium, strain CaD, was isolated from an enrichment culture of the phototrophic consortium “Chlorochromatium aggregatum”. The capability of the epibiont to grow in pure culture indicates that it is not obligately symbiotic. Cells are Gram-negative, nonmotile, rod-shaped and contain chlorosomes. Strain CaD is obligately anaerobic and photolithoautotrophic, using sulfide as electron donor. Acetate and peptone are photoassimilated in the presence of sulfide and hydrogencarbonate. Photosynthetic pigments contain bacteriochlorophylls a and c, and γ-carotene and OH-γ-carotene glucoside laurate as the dominant carotenoids. In cells from pure cultures, chlorosomes are equally distributed along the inner face of the cytoplasmic membrane. In contrast, the distribution of the chlorosomes in symbiotic epibiont cells is uneven, with chlorosomes being entirely absent at the site of attachment to the central bacterium. The symbiotic epibiont cells display a conspicuous additional layered structure at the attachment site. The G + C content of genomic DNA of strain CaD is 46.7 mol%. On the basis of 16S rRNA sequence comparison, the strain is distantly related to Chlorobium species within the green sulfur bacteria phylum (≤94.6% sequence homology). The novel isolate is therefore described as a novel species within the genus Chlorobium, Chlorobium chlorochromatii.

Keywords

Chlorobiaceae Chlorobium Symbiosis Phototrophic consortia Carotenoids Chlorochromatium aggregatum” 

Abbreviations

BChl

Bacteriochlorophyll

Bphe

Bacteriopheophytin

C.

Chlorochromatium

Cba.

Chlorobaculum

Chl.

Chlorobium

DGGE

Denaturing gradient gel electrophoresis

[E, E] BChlcF

8,12-diethyl Bchlc esterified with farnesol (analogously: [M] methyl [Pr] propyl [I] isobutyl)

Notes

Acknowledgements

We thank Dr. Karin Schubert for support during the HPLC analysis. Silvia Dobler is gratefully acknowledged for skillful technical assistance. This work was supported by a grant of the Deutsche Forschungsgemeinschaft to J. Overmann (grant no. Ov 20/10-1).

References

  1. Airs RL, Atkinson JE Keely BJ (2001) Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. J Chromatogr A 917:167–177PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Miller W, Lipmann DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Bartholomew JW (1962) Variables influencing results and precise definition of steps in Gram staining as a means of standardizing the results obtained. Stain Technol 37:139–155PubMedGoogle Scholar
  4. Bast E (2001) Mikrobiologische Methoden. 2nd edn, pp 429Google Scholar
  5. Borrego CM, Gerola PD, Miller M, Cox RP (1999) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59:159–166CrossRefGoogle Scholar
  6. Bryant RD, Costerton JW, Laishely EJ (1983) The role of Thiobacillus albertis glycocalyx in the adhesion of cells to elemental sulfur. Can J Microbiol 30:81–90Google Scholar
  7. Buder J (1914) Chloronium mirabile. Berichte deutsche botanische Gesellschaft 31:80–97Google Scholar
  8. Caldwell DR, Bryant MP (1966) Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol 14 794–801PubMedGoogle Scholar
  9. Cohen-Bazire G, Pfennig N, Kunizawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207–225PubMedCrossRefGoogle Scholar
  10. Cohen-Bazire G, Sistrom WR (1966) The prokaryotic photosynthetic apparatus. In: Veron LP, Seeley GR (eds) The chlorophylls. Academic, New York, pp 290–298Google Scholar
  11. Cunningham RK, Soderstrom TO, Gillman CF, van Oss CJ (1975) Phagocytosis as a surface phenomenon. V. Contact angles and phagocytosis of rough and smooth strains of Salmonella typhimurium, and the influence of specific antiserum. Immunol Commun 4:429–442PubMedGoogle Scholar
  12. Fletcher M, Floodgate (1973) An electron-microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. J Gen Microbiol 74:325–334Google Scholar
  13. Frigaard NU, Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67:2538–2544PubMedCrossRefGoogle Scholar
  14. Frigaard NU, Maresca JA, Yunker CE, Jones AD, Bryant DA (2004) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186:5210–5220PubMedCrossRefGoogle Scholar
  15. Fröstl J, Overmann J (1998) Physiology and tactic response of “Chlorochromatium aggregatum”. Arch Microbiol 169:129–135PubMedCrossRefGoogle Scholar
  16. Fröstl J, Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch Microbiol 174:50–58PubMedCrossRefGoogle Scholar
  17. Gasol JM, Jürgens K, Massana R, Calderón-Paz JI, Pedrós-Alió C (1995) Mass development of Daphnia pulex in a sulphide-rich pond (Lake Cisó). Arch Hydrobiol 132:279–296Google Scholar
  18. van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 49–85Google Scholar
  19. Gich F, Schubert K, Bruns A, Hoffelner H, Overmann J (2005) Specific detection, isolation and characterization of selected, previously uncultured members of freshwater bacterioplankton. Appl Environ Microbiol 71:5908–5919PubMedCrossRefGoogle Scholar
  20. Glaeser J, Overmann J (2003a) Characterization and in situ carbon metabolism of phototrophic consortia. Appl Environ Microbiol 69:3739–3750CrossRefGoogle Scholar
  21. Glaeser J, Overmann J (2003b) The significance of organic carbon compounds for in situ metabolism and chemotaxis of phototrophic consortia. Environ Microbiol 5:1053–1063CrossRefGoogle Scholar
  22. Glaeser J, Overmann J (2004) Biogeography, evolution, and diversity of epibionts in phototrophic consortia. Appl Environ Microbiol 70:4821–4830PubMedCrossRefGoogle Scholar
  23. Glaeser J, Bañeras L, Rütters H, Overmann J (2002) Novel bacteriochlorophyll e structures and species-specific variability of pigment composition in green sulfur bacteria. Arch Microbiol 177:475–485PubMedCrossRefGoogle Scholar
  24. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127CrossRefGoogle Scholar
  25. Imhoff JF (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blankenship RE, Madigan MT Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 1–15Google Scholar
  26. Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olsen protein) gene sequence. Int J Syst Evol Microbiol 53:941–951PubMedCrossRefGoogle Scholar
  27. Kanzler B, Pfannes KR, Vogl K, Overmann J (2005) Molecular characterization of the non-photosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Environ Microbiol 71:7434–7441PubMedCrossRefGoogle Scholar
  28. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–112PubMedCrossRefGoogle Scholar
  29. Lauterborn R (1906) Zur Kenntnis der sapropelischen Flora. Allg Bot Z 12:196–197Google Scholar
  30. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger J, Neumair J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568PubMedCrossRefGoogle Scholar
  31. Marshall KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348Google Scholar
  32. Mechsner K (1957) Physiologische und morphologische Untersuchungen an Chlorobacterien. Arch Mikrobiol 26:32–51PubMedCrossRefGoogle Scholar
  33. Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bact 39:159–167CrossRefGoogle Scholar
  34. Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594:33–51PubMedGoogle Scholar
  35. Overmann J (2001a) Green sulfur bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey´s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 601–605Google Scholar
  36. Overmann J (2001b) Phototrophic consortia. A tight cooperation between non-related eubacteria. In: Seckbach J (ed) Symbiosis. Mechanisms and model systems. Kluwer, Dordrecht, pp. 239–255Google Scholar
  37. Overmann J, Pfennig N (1989) Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152:401–406CrossRefGoogle Scholar
  38. Overmann J, Pfennig N (1992) Buoyancy regulation and aggregate formation in Amoebobacter purpureus from Mahoney Lake. FEMS Microbiol Ecol 10:67–79CrossRefGoogle Scholar
  39. Overmann J, Schubert K (2002) Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177:201–208PubMedCrossRefGoogle Scholar
  40. Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 32:150–155Google Scholar
  41. Overmann J, Tuschak C, Fröstl J, Sass H (1998) The ecological niche of the consortium “Pelochromatium roseum”. Arch Microbiol 169:120–128PubMedCrossRefGoogle Scholar
  42. Overmann J, Coolen MJL, Tuschak C (1999) Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch Microbiol 172:83–94PubMedCrossRefGoogle Scholar
  43. Pfennig N (1978) Rhodocyclus purpureus gen. nov. and spec. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288CrossRefGoogle Scholar
  44. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33CrossRefGoogle Scholar
  45. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43PubMedCrossRefGoogle Scholar
  46. Staehelin LA, Fuller RC Drews G (1978) Visualisation of the supramolecular architecture of chlorosomes (chlorobium vesicles) in freeze-fractured cells of Chlorofexus aurantiacus. Arch Microbiol 119:269–277CrossRefGoogle Scholar
  47. Takaichi S, Wang ZY, Umetsu M, Nozawa T, Shimada K, Madigan MT (1997) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1´,2´-dihydro-γ-carotene, 1′,2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains. Arch Microbiol 168:270–276PubMedCrossRefGoogle Scholar
  48. Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–293CrossRefGoogle Scholar
  49. Züllig H (1985) Pigmente phototropher Bakterien in Seesedimenten und ihre Bedeutung für die Seenforschung. Schweiz Z Hydrol 47:87–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kajetan Vogl
    • 1
  • Jens Glaeser
    • 1
    • 3
  • Kristina R. Pfannes
    • 1
  • Gerhard Wanner
    • 2
  • Jörg Overmann
    • 1
  1. 1.Bereich Mikrobiologie, Department Biologie ILudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Bereich Botanik, Department Biologie ILudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.Institut für Mikro- und MolekularbiologieJustus-Liebig-Universität GießenGiessenGermany

Personalised recommendations