Skip to main content
Log in

Global gene regulation in Yersinia enterocolitica: effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This study describes the involvement of the sigma factor of the flagellar system, FliA, in global gene regulation of Yersinia enterocolitica. In addition to exhibiting a positive effect upon the expression levels of eight class III flagellar operons, FliA also exhibited a negative effect upon the expression levels of four virulence operons that are located on the pYV virulence plasmid. These are yadA, virC, yopQ, and the insertion element ISYen1. While the positive effect on class III flagellar operons by FliA is most likely direct, the negative effect on the virulence operons appears to require the known transcriptional activator of these genes, VirF. This was determined using microarray analysis, quantitative PCR and a search for putative binding sites for FliA. In addition to the FliA regulation of flagellar and plasmid-encoded virulence genes, we studied temperature regulation of these genes. While wild-type cells exhibited increased expression levels of flagellar genes and decreased expression levels of plasmid-encoded virulence genes at 25°C (as compared to 37°C), temperature dependence of gene expression was much reduced in the fliA mutants. We conclude that FliA contributes to the inverse temperature regulation of flagellar and plasmid-encoded virulence genes. We present a network of transcriptional regulation around FlhD/FlhC and FliA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ORF:

Open reading frame

PCR:

Polymerase chain reaction

PMT:

Photomultiplier tube

QPCR:

Quantitative PCR

YOP:

Yersinia outer proteins

References

  • Aldridge P, Hughes KT (2002) Regulation of flagellar assembly. Curr Opin Microbiol 5:160–165

    Article  PubMed  CAS  Google Scholar 

  • Barker CS, Prüß BM (2005) FlhD/FlhC, a global transcriptional regulator in Escherichia coli. In: Prüß BM (eds) Global regulatory networks in enteric bacteria. Research Signpost, Trivandrum, pp 13–30

    Google Scholar 

  • Bartlett DH, Frantz BB, Matsumura P (1988) Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5′ consensus sequences of operons under FlbB and FlaI control. J Bacteriol 170:1575–1581

    PubMed  CAS  Google Scholar 

  • Bertin P, Terao E, Lee EH, Lejeune P, Colson C, Danchin A, Collatz E (1994) The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J Bacteriol 176:5537–5540

    PubMed  CAS  Google Scholar 

  • Bleves S, Marenne MN, Detry G, Cornelis GR (2002) Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol 184:3214–3223

    Article  PubMed  CAS  Google Scholar 

  • Bottone EJ (1977) Yersinia enterocolitica: a panoramic view of a charismatic microorganism. CRC Crit Rev Microbiol 5:211–241

    Article  PubMed  CAS  Google Scholar 

  • Chadsey MS, Karlinsey JE, Hughes KT (1998) The flagellar anti-sigma factor FlgM actively dissociates Salmonella typhimurium sigma28 RNA polymerase holoenzyme. Genes Dev 12:3123–3136

    PubMed  CAS  Google Scholar 

  • Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694–708

    Article  PubMed  CAS  Google Scholar 

  • Chuang SE, Daniels DL, Blattner FR (1993) Global regulation of gene expression in Escherichia coli. J Bacteriol 175:2026–2036

    PubMed  CAS  Google Scholar 

  • Cornelis GR (1994) Yersinia pathogenicity factors. Curr Top Microbiol Immunol 192:243–263

    PubMed  CAS  Google Scholar 

  • Cornelis G, Sluiters C, de Rouvroit CL, Michiels T (1989) Homology between virF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol 171:254–262

    PubMed  CAS  Google Scholar 

  • Cornelis GR, Sluiters C, Delor I, Geib D, Kaniga K, de Lambert RC, Sory MP, Vanooteghem JC, Michiels T (1991) ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol Microbiol 5:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Cover TL, Aber RC (1989) Yersinia enterocolitica. N Engl J Med 321:16–24

    Article  PubMed  CAS  Google Scholar 

  • Dorrell N, Li SR, Everest PH, Dougan G, Wren BW (1998) Construction and characterisation of a Yersinia enterocolitica O:8 ompR mutant. FEMS Microbiol Lett 165:145–151

    Article  PubMed  CAS  Google Scholar 

  • Farr SB, Arnosti DN, Chamberlin MJ, Ames BN (1989) An apaH mutation causes AppppA to accumulate and affects motility and catabolite repression in Escherichia coli. Proc Natl Acad Sci USA 86:5010–5014

    Article  PubMed  CAS  Google Scholar 

  • Fauconnier A, Allaoui A, Campos A, Van EA, Cornelis GR, Bollen A (1997) Flagellar flhA, flhB and flhE genes, organized in an operon, cluster upstream from the inv locus in Yersinia enterocolitica. Microbiol 143(Pt 11):3461–3471

    CAS  Google Scholar 

  • Francez-Charlot A, Laugel B, Van GA, Dubarry N, Wiorowski F, Castanie-Cornet MP, Gutierrez C, Cam K (2003) RcsCDB His–Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49:823–832

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara D, Sugiura M, Oshima T, Mori H, Aiba H, Yamashino T, Mizuno T (2003) Genome-wide analyses revealing a signaling network of the RcsC–YojN–RcsB phosphorelay system in Escherichia coli. J Bacteriol 185:5735–5746

    Article  PubMed  CAS  Google Scholar 

  • Helmann JD, Chamberlin MJ (1987) DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor. Proc Natl Acad Sci USA 84:6422–6424

    Article  PubMed  CAS  Google Scholar 

  • Homma M, Kutsukake K, Iino T, Yamaguchi S (1984) Hook-associated proteins essential for flagellar filament formation in Salmonella typhimurium. J Bacteriol 157:100–108

    PubMed  CAS  Google Scholar 

  • Ide N, Ikebe T, Kutsukake K (1999) Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella. Genes Genet Syst 74:113–116

    Article  PubMed  CAS  Google Scholar 

  • Iriarte M, Stainier I, Mikulskis AV, Cornelis GR (1995) The fliA gene encoding sigma 28 in Yersinia enterocolitica. J Bacteriol 177:2299–2304

    PubMed  CAS  Google Scholar 

  • Kaniga K, Delor I, Cornelis GR (1991) A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109:137–141

    Article  PubMed  CAS  Google Scholar 

  • Kapatral V, Minnich SA (1995) Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes. Mol Microbiol 17:49–56

    Article  PubMed  CAS  Google Scholar 

  • Kapatral V, Olson JW, Pepe JC, Miller VL, Minnich SA (1996) Temperature-dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol Microbiol 19:1061–1071

    Article  PubMed  CAS  Google Scholar 

  • Kapatral V, Anderson I, Ivanova N, Reznik G, Los T, Lykidis A, Bhattacharyya A, Bartman A, Gardner W, Grechkin G, Zhu L, Vasieva O, Chu L, Kogan Y, Chaga O, Goltsman E, Bernal A, Larsen N, D’Souza M, Walunas T, Pusch G, Haselkorn R, Fonstein M, Kyrpides N, Overbeek R (2002) Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184:2005–2018

    Article  PubMed  CAS  Google Scholar 

  • Kapatral V, Campbell JW, Minnich SA, Thomson NR, Matsumura P, Prüß BM (2004) Gene array analysis of Yersinia enterocolitica FlhD and FlhC: regulation of enzymes affecting synthesis and degradation of carbamoylphosphate. Microbiol 150:2289–2300

    Article  CAS  Google Scholar 

  • Ko M, Park C (2000) Two novel flagellar components and H–NS are involved in the motor function of Escherichia coli. J Mol Biol 303:371–382

    Article  PubMed  CAS  Google Scholar 

  • Kutsukake K, Ohya Y, Iino T (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172:741–747

    PubMed  CAS  Google Scholar 

  • Lambert de Rouvroit C, Sluiters C, Cornelis GR (1992) Role of the transcriptional activator, VirF, and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica. Mol Microbiol 6:395–409

    Article  PubMed  Google Scholar 

  • Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G (2002) LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45:521–532

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Matsumura P (1994) The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351

    PubMed  CAS  Google Scholar 

  • Liu X, Matsumura P (1995) An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene 164:81–84

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Matsumura P (1996) Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Mol Microbiol 21:613–620

    Article  PubMed  CAS  Google Scholar 

  • Lucas RL, Lostroh CP, DiRusso CC, Spector MP, Wanner BL, Lee CA (2000) Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium. J Bacteriol 182:1872–1882

    Article  PubMed  CAS  Google Scholar 

  • Macnab RM (1996) Flagella and motility. In: Neidhardt FC, Ingraham JL, Brooks Low K, Magasanik B, Schaechter M, Umbarber HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology, Washington, pp 123–145

    Google Scholar 

  • Mizushima T, Koyanagi R, Suzuki E, Tomura A, Kutsukake K, Miki T, Sekimizu K (1995) Control by phosphatidylglycerol of expression of the flhD gene in Escherichia coli. Biochim Biophys Acta 1245:397–401

    PubMed  Google Scholar 

  • Mizushima T, Koyanagi R, Katayama T, Miki T, Sekimizu K (1997) Decrease in expression of the master operon of flagellin synthesis in a dnaA46 mutant of Escherichia coli. Biol Pharm Bull 20:327–331

    PubMed  CAS  Google Scholar 

  • Mytelka DS, Chamberlin MJ (1996) Escherichia coli fliAZY operon. J Bacteriol 178:24–34

    PubMed  CAS  Google Scholar 

  • Ohnishi K, Kutsukake K, Suzuki H, Iino T (1990) Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol Gen Genet 221:139–147

    Article  PubMed  CAS  Google Scholar 

  • Pepe JC, Badger JL, Miller VL (1994) Growth phase and low pH affect the thermal regulation of the Yersinia enterocolitica inv gene. Mol Microbiol 11:123–135

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  PubMed  CAS  Google Scholar 

  • Prüß BM (2000) FlhD, a transcriptional regulator in bacteria. Recent Res Dev Microbiol 4:31–42

    Google Scholar 

  • Prüß BM, Wolfe AJ (1994) Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol Microbiol 12:973–984

    Article  PubMed  Google Scholar 

  • Prüß BM, Campbell JW, Van Dyk TK, Zhu C, Kogan Y, Matsumura P (2003) FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 185:534–543

    Article  PubMed  CAS  Google Scholar 

  • Revell PA, Miller VL (2001) Yersinia virulence: more than a plasmid. FEMS Microbiol Lett 205:159–164

    Article  PubMed  CAS  Google Scholar 

  • Rohde JR, Fox JM, Minnich SA (1994) Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling. Mol Microbiol 12:187–199

    Article  PubMed  CAS  Google Scholar 

  • Rohde JR, Luan XS, Rohde H, Fox JM, Minnich SA (1999) The Yersinia enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37°C. J Bacteriol 181:4198–4204

    PubMed  CAS  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    PubMed  CAS  Google Scholar 

  • Schmiel DH, Young GM, Miller VL (2000) The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol 182:2314–2320

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Zhou Y, Wild J, Adler J, Gross CA (1992) DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol 174:6256–6263

    PubMed  CAS  Google Scholar 

  • Shi W, Bogdanov M, Dowhan W, Zusman DR (1993) The pss and psd genes are required for motility and chemotaxis in Escherichia coli. J Bacteriol 175:7711–7714

    PubMed  CAS  Google Scholar 

  • Shin S, Park C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702

    PubMed  CAS  Google Scholar 

  • Skurnik M, Toivanen P (1992) LcrF is the temperature-regulated activator of the yadA gene of Yersinia enterocolitica and Yersinia pseudotuberculosis. J Bacteriol 174:2047–2051

    PubMed  CAS  Google Scholar 

  • Snellings NJ, Popek M, Lindler LE (2001) Complete DNA sequence of Yersinia enterocolitica serotype 0:8 low-calcium-response plasmid reveals a new virulence plasmid-associated replicon. Infect Immun 69:4627–4638

    Article  PubMed  CAS  Google Scholar 

  • Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508

    PubMed  CAS  Google Scholar 

  • Sperandio V, Torres AG, Kaper JB (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809–821

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    PubMed  CAS  Google Scholar 

  • Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, Babitzke P, Romeo T (2002) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184:5130–5140

    Article  PubMed  CAS  Google Scholar 

  • Wattiau P, Cornelis GR (1994) Identification of DNA sequences recognized by VirF, the transcriptional activator of the Yersinia yop regulon. J Bacteriol 176:3878–3884

    PubMed  CAS  Google Scholar 

  • Wolfe AJ (2005a) Acetyl phosphate is a global signal. In: Prüß BM (ed) Global regulatory networks in enteric bacteria. Research Signpost, Trivandrum, pp 31–44

    Google Scholar 

  • Wolfe AJ (2005b) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AJ, Chang DE, Walker JD, Seitz-Partridge JE, Vidaurri MD, Lange CF, Prüß BM, Henk MC, Larkin JC, Conway T (2003) Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol 48:977–988

    Article  PubMed  CAS  Google Scholar 

  • Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85

    Article  PubMed  CAS  Google Scholar 

  • Young GM, Smith MJ, Minnich SA, Miller VL (1999) The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181:2823–2833

    PubMed  CAS  Google Scholar 

  • Young GM, Badger JL, Miller VL (2000) Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect Immun 68:4323–4326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Philip Matsumura (University of Illinois, Chicago, IL, USA) for providing microarray slides, Dr. Scott A. Minnich (University of Idaho, Moscow, ID, USA) for providing strains, Dr. Phillip McClean (North Dakota State University, Fargo, ND, USA) for allowing us to use his microarray scanner, Sheri Dorsam, Rian Lee, Megan Townsend, and Jody Englin (North Dakota State University, Fargo, ND, USA) for technical assistance with various aspects of this project, and Dr. Charlene Wolf-Hall, Dr. Catherine Logue, and Dr. Eugene Berry (North Dakota State University, Fargo, ND, USA) for critically reading the manuscript. In addition, we thank the anonymous reviewers that contributed greatly to this manuscript. The research was supported by the BRIN and ND EPSCoR (through NSF grant #EPS-0132289) programs of North Dakota, the NDSU Agricultural Experiment Station, and the ‘Biosecurity, Disease Surveillance, and Food Safety’ earmark grant (through USDA-APHIS). The authors also thank the researchers at the Sanger Institute for providing their annotation data through their website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit M. Prüß.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horne, S.M., Prüß, B.M. Global gene regulation in Yersinia enterocolitica: effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes. Arch Microbiol 185, 115–126 (2006). https://doi.org/10.1007/s00203-005-0077-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0077-1

Keywords

Navigation