Skip to main content
Log in

Myxococcus xanthus twin-arginine translocation system is important for growth and development

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The twin-arginine translocation (Tat) system serves to export fully folded proteins across the cytoplasmic membrane. In many bacteria, three major components, TatA, TatB and TatC, are the functionally essential constituents of the Tat system. A Myxococcus xanthus tatB–tatC deletion mutant could aggregate and form mounds, but was unable to form fruiting bodies under nutritionally limiting conditions. When tatB–tatC mutant vegetative cells were cultured with 0.5 M glycerol, the cell morphology changed to spore-like spherical cells, but the spores were not resistant to heat and sonication treatments. In contrast to the wild-type strain, the tatB–tatC mutant also showed a decreased cell growth rate and a lower maximum cell concentration. These results suggest possibility that the Tat system may contribute to export of various important proteins for development and growth for M. xanthus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold JW, Shimkets LJ (1988) Cell surface properties correlated with cohesion in Myxococcus xanthus. J Bacteriol 170:5771–5777

    PubMed  CAS  Google Scholar 

  • Behmlander RM, Dworkin M (1991) Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J Bacteriol 173:7810–7820

    PubMed  CAS  Google Scholar 

  • Behmlander RM, Dworkin M (1994) Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol 176:6295–6303

    PubMed  CAS  Google Scholar 

  • Berks BC (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22:393–404

    Article  PubMed  CAS  Google Scholar 

  • Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35:206–274

    Article  Google Scholar 

  • Berks BC, Palmer T, Sargent F (2003) The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187–254

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt T, de Boer PAJ (2003) The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 48:1171–1182

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  PubMed  CAS  Google Scholar 

  • Bradford MN (1976) A rapid and sensitive method for the quantiation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF Jr, Alves LMC, do Amaral AM, Bertolini MC, Camargo LEA, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RMB, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJS, Ferreira RCC, Ferro MIT, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP Jr, Lemos EGM, Lemos MVF, Locali EC, Machado MA, Madeira AMBN, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CFM, Miyaki CY, Moon DH, Moreira LM, Novo MTM, Okura VK, Oliveira MC, Oliveira VR, Pereira HA Jr, Rossi A, Sena JAD, Silva C, de Souza RF, Spinola LAF, Takita MA, Tamura RE, Teixeira EC, Tezza RID, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463

    Article  PubMed  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    Article  PubMed  CAS  Google Scholar 

  • Dilks K, Rose RW, Hartmann E, Pohlschroder M (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:1478–1483

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Christie PJ (2003) Agrobacterium tumefaciens twin-arginine-dependent translocation is important forvirulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 185:760–771

    Article  PubMed  CAS  Google Scholar 

  • Downard J, Toal D (1995) Branched-chain fatty acids-the case for a novel form of cell-cell signaling during Myxococcus xanthus development. Mol Microbiol 16:171–175

    Article  PubMed  CAS  Google Scholar 

  • Dworkin M (1962) Nutritional requirements for vegetative growth of Myxococcus xanthus. J Bacteriol 84:250–257

    PubMed  CAS  Google Scholar 

  • Dworkin M (1963) Nutritional regulation of morphogenesis in Myxococcus xanthus. J Bacteriol 86:67–72

    PubMed  CAS  Google Scholar 

  • Dworkin M, Gibson SM (1964) A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146:243–244

    Article  PubMed  CAS  Google Scholar 

  • Dworkin M, Kaiser D (1985) Cell interactions in myxobacterial growth and development. Science 230:18–24

    Article  PubMed  CAS  Google Scholar 

  • Furuichi T, Inouye M, Inouye S (1985) Novel one-step cloning vector with a transposable element: application to the Myxococcus xanthus genome. J Bacteriol 164:270–275

    PubMed  CAS  Google Scholar 

  • Hagen CD, Bretscher PA, Kaiser D (1979) Synergism between morphogenic mutants of Myxococcus xanthus. Dev Biol 64:284–296

    Article  Google Scholar 

  • Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, DeBoy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts DE, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri HM, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559

    Article  PubMed  CAS  Google Scholar 

  • Heikkilae MP, Honisch U, Wunsch P, Zumft WG (2001) Role of the Tat transport system in nitrous oxide reductase translocation and cytochrome cd1 biosyntheis in Pseudomonas stutzeri. J Bacteriol 183:1663–1671

    Article  Google Scholar 

  • Hodgkin J, Kaiser D (1979) Genetics of gliding motility in Myxococcus xanthus: two gene systems control movement. Mol Gen Genet 171:177–191

    Article  Google Scholar 

  • Ize B, Stanley NR, Buchanan G, Palmer T (2003) Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48:1183–193

    Article  PubMed  CAS  Google Scholar 

  • Kaiser D (1986) Control of multicellular development: Dictyostelium and Myxococcus. Ann Rev Genet 20:539–566

    Article  PubMed  CAS  Google Scholar 

  • Kaiser D (2004) Signaling in Myxobacteria. Annu Rev Microbiol 58:75–98

    Article  PubMed  CAS  Google Scholar 

  • Kalman LV, Cheng YL, Kaiser D (1994) The Myxococcus xanthus dsg gene product performs functions of translation initiation factor IF3 in vivo. J Bacteriol 176:1434–1442

    PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing Cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213

    Article  PubMed  CAS  Google Scholar 

  • Kaplan HB (2003) Multicelluar development and gliding motility in Myxococcus xanthus. Curr Opin Microbiol 6:572–577

    Article  PubMed  CAS  Google Scholar 

  • Kim S-H, Ramaswamy S, Downard J (1999) Regulated exopolysaccharide production in Myxococcus xanthus. J Bacteriol 181:1496–1507

    PubMed  CAS  Google Scholar 

  • Kimura Y, Ishida S, Matoba H, Okahisa N (2004) RppA, a transducer homologue, and MmrA, a multidrug transporter homologue, are involved in the biogenesis and/or assembly of polysaccharide in Myxococcus xanthus. Microbiology 150:631–639

    Article  PubMed  CAS  Google Scholar 

  • Kottle RH, Bacon K, Clutter D, White D (1975) Coats from Myxococcus xanthus: characterization and synthesis during myxospore differentiation. J Bacteriol 124:550–557

    Google Scholar 

  • Kuspa A, Kaiser D (1989) Genes required for developmental signaling in Myxococcus xanthus: three asg loci. J Bacteriol 171:2762–2772

    PubMed  CAS  Google Scholar 

  • Kuspa A, Plamann L, Kaiser D (1992) Identification of heat-stable A-factor from Myxococcus xanthus. J Bacteriol 174: 7360–7369

    PubMed  CAS  Google Scholar 

  • Li Y, Sun H, Ma X, Lu A, Lux R, Zusman D, Wenyuan S (2003) Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci USA 10:5443–5448

    Article  CAS  Google Scholar 

  • Lee M, Shimkets L (1994) Cloning and characterization of the socA locus which restores development to Myxococcus xanthus C-signaling mutants. J Bacteriol 176:2200–2209

    PubMed  CAS  Google Scholar 

  • Lobedanz S, Søgaard-Andersen L (2003) Identification of the C-signal a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev 17:2151–2161

    Article  PubMed  CAS  Google Scholar 

  • Manting EH, Driessen AJ (2000) Escherichia coli translocase: the unravelling of a molecular machine. Mol Microbiol 37:226–238

    Article  PubMed  CAS  Google Scholar 

  • Palmer T, Berks BC (2003) Moving folded proteins across the bacterial cell membrane. Microbiology 149:547–556

    Article  PubMed  CAS  Google Scholar 

  • Palmer T, Sargent F, Berks BC (2003) Export of complex cofactor-containing proteins by the bacterial Tst pathway. Trends in Microbiol 13:175–180

    Article  CAS  Google Scholar 

  • Plamann L, Kuspa A, Kaiser D (1992) Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J Bacteriol 174:3311–3318

    PubMed  CAS  Google Scholar 

  • Ramaswamy S, Dworkin M, Downard J (1997) Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J Bacteriol 179:2863–2871

    PubMed  CAS  Google Scholar 

  • Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H, Lambert C, Evans KJ, Goesmann A, Meyer F, Sockett RE, Schuster SC (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303:689–692

    Article  PubMed  CAS  Google Scholar 

  • Rose RW, Bruser T, Kissinger JC, Pohlschroder M (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45:943–950

    Article  PubMed  CAS  Google Scholar 

  • Schaerlaekens K, Van Mellaert L, Lammertyn E, Geukens N, Anne J (2004) The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology 150:21–30

    Article  PubMed  CAS  Google Scholar 

  • Shimkets LJ (1990) Social and developmental biology of the Myxobacteria. Microbiol Rev 54:473–501

    PubMed  CAS  Google Scholar 

  • Sudo SZ, Dworkin M (1969) Resistance of vegetative cells and microcysts of Myxococcus xanthus. J Bacteriol 98:883–887

    PubMed  CAS  Google Scholar 

  • White DJ, Merod R, Thomasson B, Hartzell PL (2001) GidA is an FAD-binding protein involved in development of Myxococcus xanthus. Mol Microbiol 42:503–517

    Article  PubMed  CAS  Google Scholar 

  • Wolgemuth C, Hoiczyk E, Kaiser D, Oster G (2002) How myxobacteria glide. Curr Biol 12:369–377

    Article  PubMed  CAS  Google Scholar 

  • Wu SS, Kaiser D (1995) Genetic and functional evidence that type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18:547–558

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Geng Y, Xu D, Kaplan HB, Shi W (1998) A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30:1123–1130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We kindly thank Mechthild Pohlschröder, University of Massachusetts for the TATFIND program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, Y., Saiga, H., Hamanaka, H. et al. Myxococcus xanthus twin-arginine translocation system is important for growth and development. Arch Microbiol 184, 387–396 (2006). https://doi.org/10.1007/s00203-005-0067-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0067-3

Keywords

Navigation